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Abstract 

India presents itself as a paradox with low infant mortality and high malnutrition. This paper 

provides survival bias as an explanation of the paradox. Using pooled health surveys from 1993 to 

2005 and a pseudo-panel selection model, this study finds that the change in Height-for-Age Z-

Scores (HAZ scores) can be explained by mortality selection. Specifically, children with sample 

average characteristics that survive have 17.4% less HAZ scores than a child randomly drawn from 

the population indicating an overestimation of malnutrition in India. This is consistent with the 

hypothesis of weaker children surviving due to skilled delivery which pulls down the overall HAZ 

scores. The results are robust to controls for unobservable characteristics of groups of women. Son 

preference is also apparent in the results. The selection is more evident among male children and 

in the states where sex selection is historically seen as a problem in India. 
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1 Introduction 

Malnutrition has presented itself as a serious burden, especially in India. Malnutrition has been 

shown to decrease labor productivity and intelligence and lower ability to earn future income, 

perpetuating a vicious cycle of poverty (Belli, 1971). Due to the high socio-economic impacts of 

malnutrition, reduction of malnutrition and eradication of poverty and hunger is one of the UN 

Sustainable Development Goals. Consequently, to develop effective and evidence-based strategies 

to reduce undernourishment, a clear understanding of the channels is crucial. 

India presents itself as a case where despite increasing per capita incomes, it has not been able to 

decrease malnutrition at the same rate. India has seen a declining trend in its infant and neonatal 

mortality rates over the last few decades. Infant mortality is defined as a child dying before the age 

of 1 year and neonatal mortality is defined as child dying before the age of 1 month. Many sub-

Saharan African countries have lower rates of malnutrition than India, despite having much higher 

infant and child mortality rates and lower income per capita.1 India grapples with this paradox of 

low infant mortality and high malnutrition. This paper provides evidence of mortality selection as 

an explanation to the paradox of low infant mortality and high malnutrition in India. This could be 

the reason why we are not seeing malnutrition rates keeping pace with India’s recent economic 

growth. Due to improved health infrastructure and neonatal care, India is able to save weaker 

children from dying and who by surviving, lower the average anthropometric scores leading to 

statistics that indicate higher rates of malnutrition prevalence in the data. 

 
1 For example, Chad had infant mortality rate of 124 vis-a-vis 50 for India in 2009. While, Chad had 44.8% children 

below the age 5 as stunted while 47.9% in India for the same period (World Health Statistics Report, 2011). 
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Empirical estimation of the effect is important as the selection bias in this literature can work in 

different ways. First, it is possible that weaker malnourished children are more probable to die in 

the sample resulting in a sample selection such that it pushes up the anthropometric measures. On 

the other hand, it is possible as well that due to improved technology and skilled birthing 

assistance, survival of weaker children increases which instead pushes the HAZ scores down. The 

dominance of the second source of bias in the sample is consistent with the paradox of low infant 

mortality and high malnutrition in India in recent years.  

Even though this paradox is widely discussed, there are not many empirical studies analyzing the 

paradox. Panagariya (2013) compares the malnutrition rates across India and sub-Saharan Africa 

and concludes that the way malnutrition is measured could be the problem as it does not take into 

account micro-nutrient deficiencies and other aspects of malnutrition.  Jayachandran and Pande 

(2017) explore the role of son preference and birth order to suggest that the exceptionally high 

rates of stunting observed in India vis-à-vis sub-Saharan Africa is mostly due to intrahousehold 

allocation of resources. There is a wide literature on the possible mechanisms to explain the high 

malnutrition rates in India. Spears, Ghosh, and Cumming (2013) emphasizes the role of poor 

sanitation and shows that open defecation can account for 35 to 55 percent difference in stunting 

between districts in India. This paper focuses on negative sample selection bias as another 

explanation to high malnutrition rates in India. I use the widely used anthropometric measure, 

height-for-age z-score (HAZ Scores) as a measure of malnutrition to explain the paradox of low 

infant mortality and high malnutrition within India.2 To study this selection effect, I use three 

 
2 HAZ Scores are the most common anthropometric measure to track malnutrition and is used by UN and WHO. I 

focus on height instead of weight because height is considered as a long-run measure of an individual's health 

(Behrman and Deolalikar, 1988). But, I do also check for robustness of results with WAZ scores. 
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rounds of National Family and Health Surveys (NFHS) to examine the probability of survival of 

a child and link it to nutritional outcomes of the surviving children.  

Using pooled national health surveys across years allows us to study how a change in infant 

mortality affects change in rates of HAZ scores. This is an improvement over any cross-sectional 

analysis where it concentrates on levels rather than changes and is unable to explain the 

relationship between changes in the outcome and explanatory variable. Moreover, since I can 

observe different cohorts of women overtime, I can control for cohort specific time-invariant 

unobserved heterogeneity which can produce biased estimates in both mortality and malnutrition 

regression. As long as women belonging to certain cohorts based on their age group, location, and 

socio-economic characteristics are predicted to have similar unobserved characteristics, this study 

does better than others. In the empirical analysis, I estimate a sample selection model where in 

stage one, I estimate a pooled Probit model of whether or not the child is alive for all children. For 

those children that are currently alive, I then estimate a least squares model with state and cohort 

fixed effects to examine the factors influencing child malnutrition. If infant mortality is ignored 

and only data from those children who are currently alive is used to study nutritional outcomes, 

there is the possibility of sample selection bias.  

The paper’s findings suggest that infant mortality selection is significant and leads to an 

underestimation of HAZ scores in the sample, after controlling for child characteristics and mother 

cohort’s time invariant characteristics. This result is also robust to controlling for state-time trends, 

flexible specification to control for survey timing, and mother’s age at birth. I observe negative 

mortality selection in the estimates with respect to both infant and neonatal mortality. A child with 

sample average characteristics who survives with controls for unobservable characteristics of 

groups of women, has 17.4% less HAZ scores than a child randomly drawn from the population. 
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The negative mortality selection points towards the survival of weaker children in the sample 

which would have otherwise died if not saved by superior birthing technology and skills.  

The mortality selection differs by the part of HAZ or WAZ distribution the child belongs to. For 

stunting and being underweight that are measures of severe malnourishment, I in fact find a 

positive selection indicating that severely malnourished children die leaving the sample with 

higher anthropometric scores than the population. The negative selection is observed at the upper 

end of the distribution. On an average, I see that the negative selection dominates for the entire 

sample.  

The micro level health dataset also helps in identifying the heterogeneous effects based on child 

characteristics like birth order and gender. I observe the familiar gender and low birth order 

preference pattern in India (Jayachandran and Pande, 2017). With better technology, parents put 

more effort in saving a male child and even a lower birth order male child. This in turn reflects in 

a negative selection for these groups and the average HAZ scores for these groups are lower than 

the overall population. This has implication on the female sibling well-being in the long run as 

well. If households operate under constrained budgets, as is generally the case, I may see a shift of 

resources from the girl child to the male child leaving the girl sibling worse off. Results also 

suggest a spatial heterogeneity in selection. States with historically better child sex-ratios like 

Kerala display no mortality selection while states like Punjab and Haryana display high negative 

mortality selection. 

Change in HAZ can be brought about by improvement in childhood nutrition which is a causal 

channel. However, there are other channels through which I may observe changes in stunting data.  

The changes in HAZ could be brought about by changes in probability of survival due to superior 
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birthing technology which changes latent health. Another way in which the increasing trends could 

be explained is by fertility selection where more educated or wealthier mothers give birth or certain 

kind of mothers stop giving birth. It is important to understand the channels to formulate effective 

policy interventions. This paper provides evidence of mortality selection being a significant 

channel in change in HAZ scores after controlling for demographic change of mothers and types 

of households. 

2 Literature Review 

Mortality and fertility selection have been acknowledged as a potential source of bias in the 

literature. A large number of studies show the effect of anthropometric indicators on child 

mortality indicating malnourished children are more likely to die (Caulfield et al., 2004; Pelletier, 

1994; Rice et al., 2000). Boerma, Sommerfelt, and Bicego (1992) study 17 cross-sectional surveys 

and other longitudinal data in developing countries to find that malnutrition is more prevalent for 

deceased children but the survivor bias is small. These studies indicate a presence of positive 

selection, where healthier children survive leading to lesser malnutrition for the surviving 

population. However, India is experiencing an opposite phenomenon. There are other studies that 

have been done in sub-Saharan Africa and Bangladesh to look at selection effects as well. Pitt 

(1997) estimates factors affecting child mortality and child health allowing for past selective 

fertility and mortality behavior in the context of sub-Saharan Africa. He finds fertility selection to 

be a significant determinant of mortality in 14 sub-Saharan African countries but with very little 

change in parameters when selection is accounted for. Dancer, Rammohan, and Smith (2008) study 

the differences in in survival probabilities by gender and consequent differences in gender-based 

child nutrition in Bangladesh and find that after correcting for selection, female children were more 
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likely to have lower HAZ and WHZ scores. This paper’s focus will be on the negative selection 

effect explaining the paradox specific to India.  

Another strand of literature looks at the effect of selective mortality and nutrition on the heights of 

the adult population with the premise that childhood nutrition and disease environment has a 

significant effect on adult height (Akachi and Canning 2010; Bozzoli, Deaton, and Quintana-

domeque 2009; Moradi 2010). Deaton (2007) offers a framework of scarring and selection where 

he explains that positive selection effect in terms of removing shorter individuals by mortality 

outweighs the negative scarring effect in high mortality environments, resulting in taller adults in 

the case of sub-Saharan Africa. Bozzoli, Deaton, and Quintana-domeque (2009) examine adult 

height of 31 cohorts in England, US, and 10 European countries and show that the post neonatal 

mortality rate of the country predicts the average adult height of the birth cohort. Unlike developed 

countries where fall in infant mortality is accompanied by increasing heights, Akachi and Canning 

(2010) do not find evidence of the same in sub-Saharan Africa. If adult height is regarded as a 

measure of well-being, falling infant mortality may not be contributing to increased health in 

different settings.  

The paradox between falling infant mortality but small improvements in health status has been 

documented where the reductions in child mortality are brought about by directed interventions. 

Epidemiology literature has documented that vaccinations and interventions aimed at reducing 

mortality does not reduce morbidity. Pinchinat et al. (2004) find that in southern Senegal, no 

nutritional improvement was found in children in 1962-1992, despite a big drop in infant mortality. 

With medical improvements and directed efforts at reducing infant mortality, without 

complementary increase in protein and other micronutrient intake by children, India may be facing 

a similar situation. 
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The paper closest to this research is by Alderman, Lokshin, and Radyakin (2011), where they 

construct simulated nutritional status of the child population for all the children in India who die 

before the age of 3 years, assuming they were alive using a proportional hazard model. This is 

based on matching of individuals based on observable characteristics to impute HAZ scores of 

children who had died. They use the three rounds of NFHS to construct the simulations and find a 

5 percent difference between the counterfactual and the actual height-for-age z-scores. The 

problem with matching on observables is that if there are unmeasured confounding factors, the 

analysis could be biased. In terms of controlling for unobserved mother cohort characteristics 

which may affect survival and malnutrition, this study would give a better estimate of the resulting 

selection. 

3 Model 

Following Pitt (1997), I can estimate the effect of selective mortality in anthropometric measures 

of child health by reduced form equations of infant and neonatal mortality (M) and child health 

(C): 

C = Xcβc + δmcµm + νc = Xcβc + εc                         (1) 

M* = Xmβm + µm + νm = Xmβm + εm              (2) 

Where Xc and Xm are exogenous regressors, the error in both equations contain a heterogeneous 

error term µm which determines parental preferences over unwanted births (especially in the case 

of India, son preference), woman or cohort specific effects of women who observe higher mortality 

of children tend to also have children which are malnourished (δmc), general medical interventions 
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and shocks which may affect mortality etc. Child health data is observed only for surviving 

children and hence it needs to be corrected for selective mortality.  

If the errors have zero means, and νc and νm are uncorrelated, then covariance between the error 

terms can be written as: 

Cov (εm, εc) = δmcVar(µm)               (3) 

Therefore, selection bias results if δmc is not equal to 0 that is there is a feedback between mortality 

and child health. If medical technology is saving weaker infants, which then become malnourished 

due to improper care, then δmc>0. 

In the analysis, I define survival (s) as a child not experiencing neonatal or infant mortality. If the 

population errors are jointly normally distributed, the health of children conditioned on survival 

is: 

E(C|Xc, S*>0) =  Xcβc + Cov (εm, εc)λ             (4) 

where λ is the Inverse Mill’s Ratio. Omitting this λ creates a bias in the estimates of βc. 

Following Alderman et al. (2011), we can consider the HAZ scores for the whole population as, 

Zpop = Zs(1-Pd) + ZdPd                (5) 

Where Zs and Zd are average Z-scores of surviving and deceased children and Pd is the proportion 

of deceased children. The population Z score will change if deceased children survived: 

θ= Zs – Zpop = (Zs-Zd)Pd               (6) 
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According to (6), Zs>Zd and θ>0 if more malnourished children die, leading to higher existing 

HAZ scores of the sample than the population. Instead, if weaker children survive due to 

improvements in technology and other interventions such that Zs<Zd and θ<0, then it will result in 

an underestimation of HAZ-score distribution in the sample. 

4 Data 

This analysis uses data from three waves of India’s National Family Health Survey (NFHS) – 

1992/93, 1998/99 and 2005/06. The NFHS follows the pattern of a standard Demographic and 

Health Survey and is a large-scale survey covering a representative sample of households 

throughout India. For the 1992/93 survey, interviews were conducted with a nationally 

representative sample of 88,562 households and 89,777 ever-married women in the age group 13-

49, from 24 states and the then National Capital Territory of Delhi. The 1998/99 survey covered a 

representative sample of about 91,000 ever-married women age 15-49 from 26 states in India. 

NFHS-3 conducted interviews with over 230,000 women age 15-49 and men age 15-54 throughout 

India.3 

The survey is administered to ever-married females and contains detailed information about their 

reproductive history, asset ownership, vaccinations and preventive care, reproductive health, and 

educational characteristics etc. Women of reproductive age are interviewed about the date of birth 

and death (if applicable) of their pregnancy histories. This kind of retrospective survey gives an 

 
3 http://www.rchiips.org/nfhs 
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opportunity to build an indicator of infant and neonatal mortality and in turn the survival 

probabilities.4 

The NFHS provides height and weight data for children under age of 48 months in 1992/93, under 

age of 36 months in 1998/99, and under age of 60 months in 2005/06.5 The NFHS contains no 

anthropometric information for deceased children at the time of their death. The NFHS collects 

information on weight at birth in addition to weight at the time of the survey and asks mothers to 

categorize the weight of their children at birth as large, average, or small. It also collects 

information on height/length of the child and age for children up to five years of age. In the sample, 

I have 766364 children born to 234548 mothers. Out of these, 72116 children have non-missing 

data on HAZ scores and 81018 children have data on WAZ scores. 

Table 1: Summary Statistics  

 (1) (2) (3) (4)  (5) 

 Obs Mean Std. Dev. Min Max 

Infant Mortality 766364 0.0818 0.274 0 1 

Neonatal Mortality 766364 0.0511 0.22 0 1 

HAZ Score 72116 -2.13 1.7 -6 6 

Stunted (HAZ<-2) 72116 0.546 0.497 0 1 

Normal (HAZ>-1) 72116 0.22 0.414 0 1 

WAZ Score 81018 -1.84 1.3 -5.99 4.93 

Underweight (WAZ<-

2) 
81018 0.444 0.496 0 1 

Normal (WAZ>-1) 81018 0.252 0.434 0 1 

Age in Months 90818 30.5 12.4 10 59 

Height (cm) 74795 82.9 12.17 0 922.2 

Weight (Kg with 

decimal) 
81499 10.48 2.91 0.5 97 

Female 766364 0.48 0.499 0 1 

 
4 One problem that can be raised with the recall data is the measurement error problem. Since the birth histories do 

not go too much into the past, it is lesser of a problem in this case.  Moreover, since deaths of a child are important in 

a mother’s life, this variable should be recorded without much measurement error.  
5 I also check for the mortality selection effect if I constrain the results to children born under 36 months across 

different survey years in Table 6. The results are unchanged. 
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Multiple Births 766364 0.013 0.113 0 1 

Birth Order 766364 2.71 1.79 1 18 

Mother’s age 766364 35.4 7.74 14 49 

Mother’s age at birth 766364 23.3 5.12 13 48 

Uneducated 766364 0.59 0.49 0 1 

Rural 766364 0.68 0.47 0 1 

Poor 759987 0.29 0.45 0 1 

Weight of mother 

(Kg) 
474833 48.29 10.41 24 179.2 

Father Uneducated 761687 0.325 0.47 0 1 

Hindu 766364 0.749 0.43 0 1 

Muslim 766364 0.138 0.35 0 1 

SC/ST 766364 0.294 0.45 0 1 

Home Delivery 99187 0.639 0.48 0 1 

Public Delivery 99187 0.198 0.40 0 1 

Private Delivery 99187 0.156 0.37 0 1 

Delivery, Skilled 

Personnel 
99282 0.444 0.49 0 1 

Access to piped water 766364 0.192 0.39 0 1 

No access to toilet 766364 0.567 0.49 0 1 

Electricity 760183 0.642 0.47 0 1 

Note: Sample statistics of the variables are reported. Educated implies having attended any type of school 

and uneducated is defined as mother did not attend any school. Poor is defined by a mother not owning any 

asset as collected in NFHS. Rural and Urban are defined by the place of residence of mother during the 

time of interview. Female is 1 if sex of child is female. Multiple birth is a dummy variable indicating if the 

child is born in a multiple birth. It is 0 for a single birth and 1 for twins, triplets, or quadruplets. 

In Table 1, I show the summary statistics. The average infant mortality rate is 82 children per 1000 

while the average neonatal mortality rate in the sample is 51 per 1000 children. The mean HAZ 

score is -2.13 and mean WAZ score is -1.84. About 55% of the children in the sample are stunted 

(HAZ<-2) and 44% are underweight (WAZ<-2). Over the survey years, HAZ has been increasing 

and infant mortality has been falling (Appendix Figure 1). The infant mortality was about 92 deaths 

per 1000 in 1993 and has fallen to 70 deaths per thousand live births. Mean HAZ scores did not 

change a lot between 1993 and 1998, with it being around -2.3 but it increased by 2005 with the 

score at -1.89. This is shown in Fig. 4(f). The average mother’s age at birth is 23 years. Around 
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64% mothers have delivery at home and 44% mothers have their delivery by a skilled birth 

attendant. 

Figure 1 plots the relationship between HAZ and WAZ and decline in infant mortality. There is a 

strong relationship (higher confidence) between HAZ and IMR decline over the entire period and 

specifically in the later years of 1999 to 2005, which is the period of more technological 

advancements. The scatterplots show the states. Bihar, Madhya Pradesh, Rajasthan, and Uttar 

Pradesh lie below the fitted line with lower HAZ for the mortality decline. These states have 

traditionally fared worse in human development indicators in India and are termed as “BIMARU” 

states and exhibit lower HAZ in this sample as well. 

Figure 1: Infant Deaths and Malnutrition - By Survey Years  

 
Note: In the first row, these graphs plot the decline in sample infant mortality deaths for India between 1993 and 2005. 

First panel plots the fitted line and the confidence interval of the relationship between IMR Decline Rate and HAZ 

scores. Second panel plots the relationship between WAZ scores and IMR Decline rate. In the second row, these 

graphs plot the decline in sample infant mortality deaths for various states between 1993 and 1999 (first and second 

NFHS Surveys) and 1999 and 2005 (second and third NFHS surveys). For both the panels, a fitted line is drawn to 

indicate the relationship between IMR Decline Rate and HAZ scores. 
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Figure 2 plots the sample mean infant mortality rates by year in different regions of India. Most 

states exhibit a declining trend in infant mortality over the years. Kerala stands out in the southern 

region with a distinctly lower level of mortality rate. This paper argues that continued increases in 

skilled delivery has been able to save more children, resulting in negative selection in child health. 

Therefore, we should see increases in skilled delivery rates overtime. Figure 3 plots the trends in 

skilled delivery rates as well as the place of delivery overtime. Consistent with the hypothesis, we 

see an increasing trend in skilled delivery. We also observe that there is a change in preference in 

the place of birth for the child – there are more deliveries taking place in public and private 

hospitals and a marked decline in home deliveries. 

Lastly, it is imperative to look at the demographic makeup of mothers in the sample. A mother is 

labeled as educated if she has attended any type of school and uneducated if mother did not attend 

any school. Since NFHS does not have income data, definition of poor is based on possession of 

assets. NFHS asks easy-to-collect data on a household’s ownership of selected assets, such as 

radio, car, television, refrigerator, and bicycles. Therefore, for this analysis, the household is 

categorized as poor in the event of absence of these assets in the household at the time of interview. 

Rural or urban are defined by the place of residence of mother during the time of interview. Around 

59% of women interviewed are uneducated, 68% live in rural areas and 29% households have no 

assets. Figure 4 plots the difference in HAZ densities by mother characteristics. HAZ distributions 

for rural, uneducated, and poor women are skewed to the left. Mothers of different age groups also 

showcase different HAZ distributions. Keeping this in mind the mother cohorts are constructed 

later. 



15 
 

Figure 2: Infant Mortality Rates - By Region 

 
 

 
 

 
Note: These graphs plot the mean infant mortality rates over time for different geographic regions of India. North 

region consists of Haryana, Punjab, Jammu and Kashmir, Himachal Pradesh, and New Delhi. South consists of Kerala, 

Karnataka, Andhra Pradesh, and Tamil Nadu. East region has the states of West Bengal, Odisha, Bihar, and Jharkhand. 

West has Goa, Gujarat, and Maharashtra. Central is divided into Madhya Pradesh, Uttar Pradesh, Uttarakhand, 

Chhattisgarh, and Rajasthan. North-east consists of Assam, Arunachal Pradesh, Meghalaya, Mizoram, Nagaland, 

Sikkim, Manipur, and Tripura. 
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Figure 3: Trends in Skilled Delivery  

 

              

  
Note: These graphs plot the percent of births being performed by skilled personnel (delivery being assisted by doctors, 

nurse/midwife, auxiliary midwife, ayurvedic doctor, and any other India-specific health professional) and the place of 

delivery being at public institutions, home, or private institutions using three rounds of NFHS Data between 1993 to 

2005. 
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Figure 4: Variation in HAZ Scores Density  

     

 
 

Note: These graphs plot the kernel density estimates of HAZ Scores by various mother, year and region characteristics. 

Fig 4(a), 4(b), 4(c), and 4(e) plot the kernel density by mother characteristics like place of residence, age group, 

possession of assets and education respectively. Fig 4(d) plots the HAZ scores by region and 4(f) plots it by year of 

survey. 

Fig 4(a) Fig 4(b) 

Fig 4(c) Fig 4(d) 

Fig 4(e) Fig 4(f) 
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5 Empirical Strategy 

I have pooled cross-section data overtime where same individuals are not observed in different 

time periods and interview years. I expect individual heterogeneity to be present in the error term. 

Moreover, the selection process may be varying with time and individual.6 Deaton (1985) 

emphasizes on using cohort to obtain consistent estimates in pseudo-panels even in the case of 

correlation between individual effects and explanatory variables.  

The individual heterogeneity can be written as woman’s cohort effect (denoted by the subscript w) 

plus individual deviation (denoted by the subscript i). The child health equation in our case can be 

written with HAZ score (HAZit) as the dependent variable:7 

HAZit= Xitβ + αi + µit                                                                                  (7) 

Where, αi = Ʃøwαw + σi               (8) 

Xit are the independent variables expected to affect child malnutrition that vary over individual and 

time. This analysis controls for gender, multiple births, month of birth of the child, survey year, 

birth order, interaction between being a female and birth order, caste of the household, religion of 

the household, mother’s age at birth, whether the residence has access to piped water, has a toilet, 

and has electricity. The error term consists of αi and µit. The child health equation estimated by 

pooled OLS will be biased if correlated individual heterogeneity (αi) is present or selection process 

is nonrandom and αi is not a random component of the error. This would be the case if there are 

 
6 If the selection process is identical over time, then the fixed effects estimator will remove the selection bias in a 

panel data. 

7 I use the 2006 WHO standards for HAZ, computed using the Stata package “haz06" which requires the data for age, 

height, and gender from NFHS. I have also run this using the HAZ scores reported in the NFHS. But, it does not 

change the results qualitatively. 
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certain woman cohort specific characteristics (αw) like being in a rural area, being poor, being 

uneducated, or being a younger mother, which affects both the probability of survival of the child 

and nutrition that affects the error term. To eliminate these effects, fixed effects method can be 

used where cohort-specific dummies (Ʃøwαw) control for the cohort effect. Since deviation from 

cohort is independent from the selection process itself, the correlation between them now should 

be zero which would lead to efficient estimates. 

Rodríguez and Muro (2014) develop a selection bias estimation for pseudo-panel data and show 

that using probit model with cohorts as instruments, a cohort level inverse Mills ratio can be 

derived and which can be replaced in the child health equation to derive estimates of selection 

bias. Accordingly, the selection equation is estimated by a probit model with controls for cohort 

dummies. A cohort is defined by a group of mothers belonging to the same age group (based on 

their year of births), residence, education, and economic condition. Since there are considerable 

differences in the distribution of HAZ scores by these characteristics, the mother-cohort groups 

are constructed keeping that in mind.8 Controlling for mother cohorts also controls for changing 

demography and fertility which could be instrumental in advancing a change in HAZ, which I may 

erroneously attribute to improvement in nutrition.  

The survival equation, indicating selective mortality is described by: 

Sit* = Zitγ + ηi + uit ; Sit = 1 [Sit∗>0]                          (9) 

 
8 Including different characteristics with missing values, increases the number of cohorts but decreases the 

observations within cohorts; which is not desirable computationally and otherwise for consistency (Borjas and 

Sueyoshi 1994) 
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Survival (Sit) is the observation of child not dying in the data till the age of 1 year and in case of 

neonatal survival, till the age of 1 month. Zit are the independent variables expected to affect child 

survival and are the same as used in the child health equation. Individual heterogeneity is present 

in the error term (ηi and uit), which again is controlled for by using cohort-specific dummies. 

For us to be able to identify the parameters of reduced form mortality selection and determinants 

of health, I need at least one exogenous variable that affects mortality or survival but does not 

affect child health and anthropometric scores. It has been noted in the literature that to avoid weak 

identification, there should be some variables in the selection equation which are not there in the 

child health equation so that the effect is not identified solely off of nonlinearity in the inverse 

Mills ratio (Little 1985; Vella 1998). It is also important to check for high correlations between 

inverse Mills ratio and the regressors in substantive equation to ensure the efficiency of the 

estimates (Bushway, Johnson, and Slocum 2007).9 Moreover, not having any excluded variable 

may inflate the standard errors and give unreliable estimate of β in the substantive child health 

equation. To account for these problems, in this analysis, this excluded variable is if the woman 

has her delivery by a professional doctor or nurse.10 After controlling for observable characteristics 

like gender of the child, being born in a multiple birth, month of birth of the child, survey year, 

birth order, interaction between being a female and birth order, caste of the household, religion of 

the household, mother’s age at birth, whether the residence has basic amenities like access to piped 

water, a toilet, and electricity and running the fixed effects analysis for mothers within the same 

economic condition, area of residence, age, and education; having a delivery done by a medical 

 
9 Correlation of inverse Mills ratio with other independent variables are provided in the Appendix Table A2. 

10 Skilled delivery assistance is measured by delivery being assisted by doctors, nurse/midwife, auxiliary midwife, 

ayurvedic doctor, and any other India-specific health professional. It is not considered as skilled assistance if the baby 

is born with the help of trained birth attendant, traditional birth attendant, relatives, other persons, or no one. 
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professional affects the probability of survival of the child but does not directly affect the HAZ 

score of the child later on. 

In the parametric estimation, after the estimation of selection equation over all observations, the 

inverse Mills ratio is constructed, which is the ratio of probability density function and the 

cumulative distribution function of the standard normal distribution. This ratio then is used as an 

additional regressor in the child health equation to consistently estimate the parameters: 

HAZit= Xitβ + θλit + µit                                                                                  (10) 

The equation controls for all the independent variables in the selection equation, except for the 

excluded variables (delivery by skilled birth attendant). If θ is statistically significant, it points 

towards a selection effect operating through selective mortality on health measures. If θ>0, there 

is a positive selection meaning those who survive have a higher HAZ than a random drawing from 

the population with the same characteristics. If θ<0, there is a negative selection meaning those 

who survive have a lower HAZ than a random drawing from the population with the same 

characteristics. Moreover since this equation is able to control for mother-cohorts, any cohort 

specific time invariant heterogeneity is taken care of. Any health specific shocks and survey-year 

differences are captured through the year dummies. Standard errors are clustered at the mother-

cohort level to improve inference. 

In India, especially in rural areas, studies have shown that differential health outcomes can be 

expected by birth order of the child and also by gender (Behrman and Taubman 1986; Horton 

1988; Jayachandran and Pande 2017; Savage et al. 2013). To test if there is a differential selection 

effect, I run the child health specification separately for children with first and second birth order 

versus children of later birth order. The negative selection effect should be prominent in later birth 
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children as they are more probable to be saved by neonatal care units but get lower nutrition inputs 

in a budget constrained household. Similarly, I postulate that females with higher birth order 

should be more affected than males or females in lower birth order. Heterogeneity is also expected 

by state, place of residence, and time.  

6 Results 

6.1 Selection Effects 

The mortality selection effect is captured by the coefficient on inverse Mills ratio and is presented 

in Table 2. Columns (1)-(3) provide the effect of inverse Mills ratio on HAZ and WAZ scores 

which conditions for survival of children till 1 year of age. Probit estimates and correlations 

between inverse Mills Ratio and covariates are provided in Appendix Table A1 and A2. The results 

indicate that skilled birth assistance is significant at the 1% level and more skilled birth delivery 

increases the survival and therefore decreases both infant and neonatal deaths. Moreover, as shown 

in Appendix Table A2, the correlation between any of the independent variables and the inverse 

Mills ratio is never alarmingly high and much less than the thumb rule of 0.9. Table 2, column (1) 

finds evidence of negative selection, even in the absence of cohort fixed effects. Columns (2) and 

(3) control for mother cohorts and see the effect on HAZ and WAZ respectively. In both the results, 

the coefficient is similar to (1) and highly statistically significant at 1% significance level. With 

mean inverse Mills ratio in the sample being 0.116, the absolute coefficient value of 1.38 implies 

an average truncation effect of (0.116*1.38) = 0.16. Thus, the HAZ scores are shifted down due to 

the selection effect. A child with sample average characteristics who survives with controls for 

demographic change in fertility of women, has -(exp(0.16)-1)*100 = 17.4% less HAZ scores than 

a child randomly drawn from the population.  
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Table 2: Selective Mortality and correction for selection 

 Infant Mortality Neonatal Mortality  

 (1)  (2) (3) (4)  (5) (6) (7) 

Dependent 

Variable 
HAZ HAZ WAZ HAZ HAZ WAZ HAZ 

Inverse Mills 

Ratio 

-1.42** -1.38*** -1.18*** -1.99*** -1.21* -0.82*  

(0.52) (0.45) (0.37) (0.33) (0.62) (0.47)  

Female 
0.048** 

(0.021) 

0.045* 

(0.02) 

0.028 

(0.02) 

0.04* 

(0.021) 

0.05** 

(0.025) 

0.039* 

(0.019) 

0.077*** 

(0.022) 

Multiple 
0.221 

(0.22) 

0.21 

(0.17) 

0.121 

(0.127) 

0.34** 

(0.15) 

0.091 

(0.19) 

-0.05 

(0.14) 

-0.27*** 

(0.06) 

Birth order 2 
-0.22*** 

(0.025) 

-0.24*** 

(0.027) 

-0.19*** 

(0.022) 

-0.24*** 

(0.024) 

-0.24*** 

(0.026) 

-0.18*** 

(0.02) 

-0.18*** 

(0.022) 

Birth order 3 
-0.37*** 

(0.028) 

-0.40*** 

(0.032) 

-0.29*** 

(0.028) 

-0.44*** 

(0.032) 

-0.40*** 

(0.034) 

-0.29*** 

(0.03) 

-0.33*** 

(0.026) 

Birth order 4 
-0.39*** 

(0.033) 

-0.41*** 

(0.040) 

-0.35*** 

(0.030) 

-0.49*** 

(0.037) 

-0.42*** 

(0.042) 

-0.35*** 

(0.031) 

-0.37*** 

(0.033) 

Birth order 5 
-0.50*** 

(0.057) 

-0.50*** 

(0.047) 

-0.42*** 

(0.032) 

-0.64*** 

(0.058) 

-0.53*** 

(0.048) 

-0.43*** 

(0.034) 

-0.49*** 

(0.046) 

Birth order 6 
-0.62*** 

(0.072) 

-0.60*** 

(0.053) 

-0.49*** 

(0.042) 

-0.74*** 

(0.068) 

-0.62*** 

(0.054) 

-0.52*** 

(0.04) 

-0.65*** 

(0.052) 

Birth order 7 
-0.72*** 

(0.086) 

-0.67*** 

(0.066) 

-0.48*** 

(0.049) 

-0.88*** 

(0.078) 

-0.71*** 

(0.065) 

-0.51*** 

(0.05) 

-0.76*** 

(0.065) 

Birth order 8 
-0.74*** 

(0.091) 

-0.67*** 

(0.089) 

-0.52*** 

(0.066) 

-0.88*** 

(0.093) 

-0.68*** 

(0.09) 

-0.55*** 

(0.06) 

-0.82*** 

(0.08) 

Birth order 9 
-0.86*** 

(0.145) 

-0.73*** 

(0.095) 

-0.62*** 

(0.08) 

-1.04*** 

(0.153) 

-0.79*** 

(0.92) 

-0.68*** 

(0.077) 

-0.95*** 

(0.10) 

Birth 

order>10 

-0.87*** 

(0.166) 

-0.70*** 

(0.126) 

-0.56*** 

(0.102) 

-1.03*** 

(0.162) 

-0.77*** 

(0.126) 

-0.61*** 

(0.10) 

-0.99*** 

(0.116) 

Piped water 
0.15*** 

(0.018) 

0.13*** 

(0.021) 

0.13*** 

(0.014) 

0.19*** 

(0.017) 

0.14*** 

(0.021) 

0.14*** 

(0.014) 

0.17*** 

(0.018) 

No toilet 
-0.21*** 

(0.032) 

-0.21*** 

(0.02) 

-0.25*** 

(0.014) 

-0.29*** 

(0.031) 

-0.22*** 

(0.021) 

-0.26*** 

(0.014) 

-0.24*** 

(0.017) 

Electricity 
0.117*** 

(0.029) 

0.13*** 

(0.019) 

0.13*** 

(0.015) 

0.19*** 

(0.027) 

0.14*** 

(0.02) 

0.14*** 

(0.016) 

0.15*** 

(0.02) 

State FE YES YES YES YES YES YES NO 

Cohort FE NO YES YES NO YES YES NO 

Number of 

groups 
27 233 233 27 223 223  

Observations 68345 67886 76662 67532 67532 76274 68422 

Note: Mortality selection effect is captured by the Inverse Mills Ratio. The procedure of deriving the ratio is described 

in the text. Mother cohort is defined by mothers grouped by rural or urban residence, education, poverty and age. Not 

all control variables included are listed in the table for brevity. The other control variables included in the 

specifications are age of child, mother’s age at birth, female-specific birth order, birth order, birth month, year of 
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survey, caste, religion, and state dummies. Standard errors clustered at the group level (cohort/state) are reported in 

brackets. Column (7) provides OLS estimates without any selection correction. 

*** Significant at 1% level, ** significant at 5% level, * significant at 10% level. 

 

In Table 2, (4)-(6), first stage probit estimates the probability of survival till 1 month of age. The 

resulting inverse Mills ratio is calculated and included in these regressions. With only the state 

fixed effects, the ratio is highly significant and similar in magnitude as before. With the inclusion 

of cohort effects, the coefficients are now significant at 10% level. But, the sign of the coefficients 

is still negative and magnitude similar, albeit a little bit smaller. The negative inverse Mills ratio 

points towards the direction of a negative selection, implying that the HAZ and WAZ scores of 

the sample are lower than a population taken at random. This supports our hypothesis that weaker 

children are surviving due to skilled delivery that pulls down the sample anthropometric scores. 

It is interesting to note the coefficients on some other important variables that are historically 

deemed to be important in determination of malnutrition in children. I run the OLS regression of 

HAZ score on all the control variables in Table 2, (7) without accounting for selection, where 

being a female or born in a multiple birth significantly affects HAZ. However, after controlling 

for selection, being born in a multiple birth is not statistically significant in almost all specifications 

and the coefficient of female dummy reduces. Birth order, access to clean drinking water, having 

a toilet and access to electricity all remain significant and similar in magnitude, even after 

accounting for selective mortality, corroborating the important roles of these variables in 

explaining malnutrition (Jayachandran and Pande 2017; Spears et al. 2013). With skilled delivery 

and medical inputs, the complications arising due to multiple births are taken care of, resulting in 

no differentiation in HAZ between multiple birth children and single birth children conditional on 

surviving. 
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According to WHO Standards, both HAZ and WAZ score use the cutoff of -2 to measure moderate 

and severe under nutrition.11 Having a low HAZ score is termed as stunted growth while a low 

WAZ score leads to the child being underweight. Stunted growth refers to a child below 5 years 

being short for his/her age and is an indicator of chronic malnutrition. Low WAZ can be either due 

to the child being thin or short for his/her age. This is a combination of chronic and acute 

malnutrition. Table 3 checks for the presence of mortality selection at various points of the HAZ 

and WAZ distribution. For stunting and underweight children, I find effects of positive selection 

whereas for HAZ and WAZ scores greater than -2 negative mortality selection I observe negative 

selection.  

This is consistent with our hypothesis. At the lower end of the distribution, the children are severely 

under-nourished. This would mean that they are at a higher risk of dying of less nourishment 

leaving the sample HAZ scores higher than the whole population. On the other hand, with HAZ 

and WAZ scores greater than -2, if medical intervention is able to save the children and they do 

not get enough nourishment later, they survive but the presence of these children lowers the HAZ 

score than the anthropometric score for the population. 

 

 

 

 

 
11 A z-score of zero indicates the median of gender and age specific reference population, -1 is 1 standard deviation 

below and +1 is 1 standard deviation above the reference median population. 
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Table 3: Selection by HAZ and WAZ Profile 

 HAZ WAZ 

 (1)  (2) (3) (4)  (5) (6) 

Dependent 

Variable 
HAZ<-2 

-2<HAZ<-

1 
HAZ>-1 WAZ<-2 -2<WAZ<-1 WAZ>-1 

Inverse Mills 

Ratio 

1.05*** -0.493*** -0.562*** 0.578*** -0.424*** -0.432*** 

(0.087) (0.073) (0.071) (0.085) (0.079) (0.092) 

Explanatory 

Variables 
YES YES YES YES YES YES 

Cohort FE YES YES YES YES YES YES 

Interview 

Dummy  
YES YES YES YES YES YES 

Number of 

groups 
233 233 233 233 233 223 

Observations 67886 67886 67886 76662 76662 76274 

Note: Mortality selection effect on HAZ and WAZ scores are evaluated at different cutoffs. The other control variables 

included in the specifications are sex of child, whether born in a multiple birth, mother’s age at birth, birth order, 

female interacted with birth order, birth month, year of survey, whether the household has access to piped water, 

electricity and toilet, caste, religion, and state dummies. Mother cohort is defined by mothers grouped by rural or 

urban residence, education, being poor and age. Standard errors clustered at the mother cohort level are reported in 

brackets.  

*** Significant at 1% level, ** significant at 5% level, * significant at 10% level. 

6.2 Heterogeneity in Selection 

India presents a case of strong gender preferences and birth order differences in health outcomes 

(Behrman 1988; Jayachandran and Pande 2017). As plotted in Appendix Figure A2, the changes 

in infant mortality also differ by birth order and gender.12 Hence, I expect to see differential 

selection outcomes based on gender, birth order, and an interaction between the two. This 

hypothesis is tested and results are presented in Table 4. For both infant and neonatal survival 

 
12 Similarly, percentage change in HAZ also differs by gender and birth order, as shown in Appendix Figure A4. 
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selection, I see that while male HAZ scores have a significant negative effect of selection, no such 

effect is found for the female group. This would be the case if parents especially put more effort 

in getting even a weaker male child to survive but do not put such an effort in the case of a girl 

child. Due to the patriarchy structure in India with explicit son preference, the results seem 

plausible.  

Parents and families face different financial constraints over time and hence may devote less or 

more resources to latter-born children (Jayachandran and Pande 2017). If the family is more 

constrained, the outcome for health of latter born child will be negatively affected than their older 

counterparts. Mothers giving birth at an older age way back in time would face higher probability 

of a latter-born child dying than mother giving late birth in a new era when technology is able to 

save her children, without changing family’s health behavior much. This is represented in the data 

in Appendix Figure A3. For any given birth order, the infant mortality rate is lower in 2005 than 

it was in 1993. 

Results in Table 4, columns (2) and (4), corroborate this hypothesis. High birth order children 

display a negative selection bias implying that technology may have been able to save the 

inherently weak children lowering the HAZ and WAZ scores. On the other hand, low birth order 

children have positive selection bias implying those who are surviving are in fact healthier than 

the population in general. 
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Table 4: Heterogeneity by gender and birth order  

 Infant Mortality Neonatal Mortality 

 (1) (2) (3) (4) (5) (6) 

Dependent 

Variable 
HAZ HAZ HAZ HAZ HAZ HAZ 

Female 
-0.266 

(0.739) 
  

1.64 

(1.13) 

  

N 32586   32417   

Number of Cohorts 231   221   

Male 
-2.43*** 

(0.73) 
  

-1.44** 

(0.657) 

  

N 35300   35300   

Number of Cohorts 233   233   

Birth order<=2  
1.96*** 

(0.56) 
  

5.62*** 

(0.853) 

 

N  38190   38138  

Number of Cohorts  217   212  

Birth Order>2  
-2.94*** 

(0.438) 
  

-3.03*** 

(0.673) 

 

N  29696   29394  

Number of Cohorts  219   209  

Birth order<=2 & 

Male 
  

2.02*** 

(0.691) 
 

 4.52*** 

(0.95) 

N   19726   19698 

Number of Cohorts   205   200 

Birth order>2 & 

Male 
  

-3.29*** 

(0.663) 
 

 -3.29*** 

(0.88) 

N   15574   15417 

Number of Cohorts   213   203 

Birth order<=2 & 

Female 
  

2.13** 

(1.06) 
 

 7.61*** 

(1.40) 

N   18464   18440 

Number of Cohorts   207   203 

Birth order>2 & 

Female 
  

-2.64*** 

(0.59) 
 

 -2.87*** 

(1.00) 

N   14122   13977 

Number of Cohorts    212   202 

Note: All the cells represent different regressions on a pooled sample of mothers in multiple surveys in India, according to different 

criterions. The sample is restricted to females or males in (1) and (4), lower birth order (<=2) or higher birth order (>2) in (2) and 

(5), and interaction between gender and birth order in (3) and (6). The control variables are sex of child, whether born in multiple 

birth, birth order, birth month, mother cohort fixed effects, interview-time dummies, mother’s age at birth, caste, religion, piped 

water availability, access to toilet, and whether house has electricity. Standard errors clustered at mother cohort level are reported 

in brackets.   

*** Significant at 1% level, ** significant at 5% level, * significant at 10% level. 
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The distinction between birth orders is also apparent when females are higher birth order children. 

Being a female at higher birth order acts as a double disadvantage for female children as in a 

resource constrained environment, females receive fewer resources than their male counterparts 

and if the family size is bigger and they are later born, this distinction should be sharper. Table 4, 

columns (3) and (6), test for the differences in selection by birth order and gender. Both male and 

female children with high birth order display negative selection, consistent with columns (2) and 

(4). Male children see a higher negative selection (-3.29) than females (-2.64). It reinforces the 

fact that higher order male children are more likely to be survived by advanced technology than 

female children at higher birth orders. 

I also expect to see spatial heterogeneity in selection effect. Urban areas have access to better 

healthcare facilities and therefore, better access to skilled delivery. We should expect to see a 

strong negative selection in urban areas while not for rural areas. The results are presented in Table 

5, columns (2) and (5). As expected, we see evidence of greater negative selection in urban areas 

for both infant and neonatal mortality. We do not see any statistically significant selection effect 

of skilled delivery in rural areas.13  

Based on regions displaying different culture of son preference, heterogeneity by states is also 

expected. Kerala has distinctively better male-to-female child sex ratio (1.04) than the average in 

India (1.08), according to 2001 census. Since most of the negative mortality selection is observed 

in male child, with parity, I should observe no selection effect for this state. Table 5, column (1) 

and (4) displays the results. There is no statistically significant evidence of mortality selection in 

Kerala. The magnitude of the coefficient is also small and positive. According to Census 2001, 

 
13 Since mother cohorts are defined by the place of residence, heterogeneity for urban and rural areas cannot be carried 

out at the mother cohort level. The analysis for the heterogeneity has been performed with state fixed effects. 
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while Kerala has a high child sex ratio, there are six states which perform poorly and below the 

national average – Gujarat, Punjab, Haryana, New Delhi, and Himachal Pradesh. With a strong 

preference for boys documented for these states, the effect of negative mortality selection should 

be more pronounced. Table 5 columns (3) and (6) show that the coefficient for mortality selection 

is negative, high in magnitude, and statistically significant. 

Table 5: Spatial Heterogeneity  

 Infant Mortality  Neonatal Mortality 

 (1) (2) (3) (4) (5) (6) 

Dependent 

Variable 
HAZ HAZ HAZ HAZ HAZ HAZ 

Kerala 
0.649 

(7.79) 
 

 2.86  

(4.36) 

  

N 596   592   

Number of 

Cohorts 
81  

 
79 

  

Urban Areas  
-4.08*** 

(0.88) 

  -2.66** 

(1.15) 

 

N  22446   22446  

Number of 

Cohorts 
 29 

  
29 

 

Rural Areas  
-1.49 

(0.98) 

  -1.45 

(1.31) 

 

N  46260   46260  

Number of 

Cohorts 
 29 

  
29 

 

Worse sex ratio 

states 
  

-7.2*** 

(0.82) 

 
 

-9.63*** 

(1.20) 

N   15133   15060 

Number of 

Cohorts  
  227 

 
 217 

Note: All the cells represent different regressions on a pooled sample of mothers in multiple surveys in India, according to different 

criterions. The sample is restricted to state of Kerala in (1) and (4), urban and rural areas in (2) and (5), and worse sex ratio states 

– Gujarat, Punjab, Haryana, New Delhi, and Himachal Pradesh in (3) and (6). The control variables are sex of child, whether born 

in multiple birth, birth order, birth month, mother cohort fixed effects, interview-time dummies, mother’s age at birth, caste, 

religion, piped water availability, access to toilet, and whether house has electricity. Standard errors clustered at mother cohort/state 

level are reported in brackets.   

*** Significant at 1% level, ** significant at 5% level, * significant at 10% level. 
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6.3 Robustness Checks 

It could be argued that the excluded variable of skilled birth delivery may not satisfy the exclusion 

restriction since it can be taken as a proxy for accessibility to health center which also affects HAZ. 

Even though this exclusion conditional on other covariates, cannot be tested econometrically, I 

provide evidence that it does not belong in the second stage HAZ regression. To account for 

accessibility to health inputs, another variable detailing the number of antenatal visits made by 

mother to the hospital is included in both the first and second stage regressions. For infant mortality 

selection, as presented in Table 6 (5), the inverse Mills ratio is negative and statistically significant. 

Similarly, it could be argued that a healthy mother would be more probable to experience a lesser 

incidence of infant mortality and at the same time be better able to raise a healthy child. Since this 

is an individual mother attribute which varies within a cohort, this is not taken care of by the 

mother cohort fixed effect, which accounts for mothers being poor, in rural areas, in a certain age 

group, and education. NFHS collects data on weight of the woman in the women’s questionnaire 

for mothers of children born in the three/five years preceding the survey. To control for health of 

the mother, I include weight of the mother in both the first and second stage regressions. I find the 

negative and significant effect of infant mortality selection prevalent in this specification as well, 

as seen in Table 6 (7). 

The results are also robust to changing the outcome variable from HAZ and WAZ to height in 

centimeters and weight in kilograms. As seen in columns (3) and (4) of Table 6, I still find effects 

of negative mortality selection and it is significant at the conventional levels. The model is also 

robust to inclusion of state time trends, which take into account differential levels of development 

of the states implying that this selection is observable within mothers of similar characteristics 

within state as well. Since the height and weight data for children in different rounds of NFHS 
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differs by age of child, I restrict the sample to children within 36 months of interview year across 

all survey years to maintain comparability. The estimates are given in Table 6, column (6). The 

coefficient on inverse Mills ratio is virtually unchanged from the previous regressions. Lastly, 

since there are three pooled surveys which have been carried out in different years and at different 

times of the years, to control more flexibly for survey time; a linear, quadratic and cubic term of 

the month-year survey time is added to the specification along with age of child and year of birth. 

This does not significantly affect the results and the coefficient is similar as before. 

Table 6: Robustness - Different specifications for mortality selection 

 (1) (2) (3) (4) (5) (6) (7) 

Dependent 

Variable 
HAZ HAZ 

Height in 

CM 

Weight in 

KG 
HAZ HAZ HAZ 

Sample 

Including 

state 

time 

trends 

Including 

year of 

birth, 

square and 

cubic terms 

of survey 

year 

Replace the 

outcome 

variable, 

HAZ 

Replace 

the 

outcome 

variable, 

WAZ 

Include 

Antenatal 

Visits 

(infant 

survival) 

<3years 

from 

interview 

date 

Include 

weight 

of the 

mother 

(infant 

survival) 

Inverse 

Mills Ratio 

-3.3*** -1.51*** -15.55*** -1.27*** -2.29*** -1.87*** -1.46** 

(0.37) (0.46) (1.33) (0.37) (0.324) (0.53) (0.59) 

Explanatory 

Variables 
YES YES YES YES YES YES YES 

Cohort FE YES YES YES YES YES YES YES 

Interview 

Dummy  
YES YES YES YES YES YES YES 

Number of 

groups 
233 233 233 233 229 226 216 

Observation 67886 67886 70480 77125 57360 57025 47214 

Note: All the cells represent different regressions on a pooled sample of mothers in multiple surveys in India, according to different 

criterions. The regression controls for state-time trends in addition to state and year of survey dummies in (1), (2) includes the year 

of birth along with age at birth and linear, quadratic and cubic controls for survey month-year, (3) replaces the HAZ outcome 

variable to height measured in centimeters and (4) measures the outcome in weight measured in kilograms instead of WAZ, (5) 

includes antenatal visits as a control in both first and second stage regressions, (6) includes restricting sample to births within 36 

months, and (7) includes mother’s weight as a control in both first and second stage regressions. The control variables are sex of 

child, whether born in multiple birth, birth order, birth month, mother cohort fixed effects, interview-time dummies, mother’s age 

at birth, caste, religion, piped water availability, access to toilet, and house has electricity. Standard errors clustered at mother 

cohort level are reported in brackets. 

*** Significant at 1% level, ** significant at 5% level, * significant at 10% level. 
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Table 7 approaches the problem of selection by another empirical method and creates a 

counterfactual. I can calculate the predicted HAZ score if deceased children were included in the 

sample. In NFHS, I have fertility history of mother and many women give birth to more than one 

child. Assuming that mothers have similar abilities in raising all their children and siblings who 

died will be similar to the ones who survived, after controlling for child characteristics, I develop 

a predicted HAZ score for the whole sample, including the children who died. This predicted HAZ 

is better in terms of being able to control for mother unobserved characteristics than random 

matching based on observable covariates. Since over the years medical technology has improved 

with better neonatal care, HAZ scores in later survey years will be an underestimate in the sample. 

I expect that in the predicted sample, the coefficient on 2005 survey year is less positive and 

statistically significant in increasing HAZ scores. 

HAZ has been increasing over the survey years.14 But some of this increase is explained by 

changing child demographics and women demographics. Table 7, column (1) provides the results 

of regression of HAZ on child covariates and survey years. The coefficient on 2005 survey year is 

positive and statistically significant. Further, I control for mother characteristics in (2). The 

coefficient on 2005 dummy is still positive, statistically significant, but a little lesser in magnitude. 

Column (3) now uses the predicted HAZ as the outcome variable. Predicted HAZ is obtained by 

regressing HAZ on child covariates and family fixed effects and getting a linear prediction. This 

now includes the predicted HAZ scores for children who have died, creating a counterfactual of 

survival. The coefficient on the 2005 interview year dummy is significant but almost similar in 

 
14 Graph in Appendix Figure A1. 
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magnitude. Similarly, in (4)-(6), the WAZ scores are positive and significant, but not very different 

in magnitudes. 

Table 7: Including deceased children in HAZ and WAZ 

 HAZ WAZ 

 (1)  (2) (3) (4)  (5) (6) 

Dependent 

Variable 
HAZ HAZ HAZ-hat WAZ WAZ WAZ-hat 

Child’s Age  
-0.004*** -0.009*** -0.005*** -0.002*** -0.006*** -0.0035*** 

(0.0007) (0.0015) (0.006) (0.0005) (0.001) (0.0003) 

Female 
0.294*** 

(0.037) 

0.30*** 

(0.037) 

-0.0065 

(0.033) 

0.27*** 

(0.028) 

0.28*** 

(0.028) 

-0.28 

(0.019) 

Multiple 
-0.149** 

(0.073) 

-0.216** 

(0.070) 

-0.342*** 

(0.074) 

-0.186*** 

(0.061) 

-0.25*** 

(0.058) 

-0.502*** 

(0.044) 

Interview 

Year 
      

1998 
-0.021 

(0.018) 

-0.041** 

(0.018) 

0.180 

(0.016) 

0.103*** 

(0.013) 

0.064*** 

(0.013) 

0.0107 

(0.009) 

2005 
0.496*** 

(0.016) 

0.374*** 

(0.016) 

0.340*** 

(0.014) 

0.279*** 

(0.012) 

0.134*** 

(0.012) 

0.203*** 

(0.008) 

Mother and 

House 

Controls  

NO YES NO NO YES NO 

Observations 72116 70271 90818 81018 79141 90818 

Note: HAZ and WAZ represent the available anthropometric scores of all the living children. HAZ-hat and WAZ-hat 

are the predicted HAZ and WAZ scores for the full sample including the deceased children. The predicted values are 

calculated by a regression of HAZ and WAZ on child characteristics and controlling for mother fixed effects. The 

other child control variables included in the specifications are birth order, female specific with birth order, and birth 

month. Mother and house characteristics include mother’s age at birth, caste, religion, rural or urban residence, 

education, being poor and mother’s age. Standard errors clustered at the mother level are reported in brackets.  

*** Significant at 1% level, ** significant at 5% level, * significant at 10% level. 
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7 Conclusion 

This paper analyzes the paradox of decreasing infant mortality but not a corresponding increase in 

health anthropometric scores in India over time. Using three rounds of health surveys in India, I 

find evidence of negative mortality selection. This negative selection is observed when the 

anthropometric scores are above -2 standard deviations. With improved technology, weaker 

children are surviving pulling down the sample HAZ and WAZ scores than what the scores would 

have been otherwise. With a lot of emphasis on reduction in mortality and improving child 

nutrition as part of Sustainable Development Goals, this result should be taken into consideration. 

India has recently embarked on establishment of Special Newborn Care Units (SNCUs) in 2013 at 

district hospitals and sub-district hospitals to provide care for sick newborns. The improved efforts 

to decrease infant and neonatal deaths by providing one shot interventions like these should be 

followed by health and nutrition interventions to keep malnourishment away. The maternal and 

child development literature has focused on interventions like promotion of breastfeeding, 

micronutrient interventions for children like zinc, iodine, iron, and Vitamin A supplementation as 

well as general community education strategies like promotion of handwashing to reduce stunting 

and suboptimal development. If weaker children survive due to successful neonatal interventions, 

without provision of appropriate care afterwards, it would worsen the case of malnutrition. 

I also find evidence of heterogeneous effects based on gender and birth order of the child. Given 

the strong son preference in India this is not surprising. Male children are more likely to experience 

negative selection in mean HAZ and WAZ scores with no such effects for the female child. With 

a patrilineal structure in India, all efforts to save a male child are expected, which makes the 

probability of finding a weaker male child in the distribution higher; pulling down the overall 

anthropometric scores. In terms of birth order, I observe negative selection effect in higher birth 
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order children, for both males and females. Spatial heterogeneity is also observed with states 

historically better off in child sex ratio composition like Kerala displaying no evidence of selection 

while states with skewed sex ratios like Punjab, Haryana, Gujarat, New Delhi and Himachal 

Pradesh, display a strong negative selection indicating the presence of son preference. These 

patterns of mortality selection may be depressing the child anthropometry scores, hiding the fact 

that India maybe doing better in terms of number of malnourished children in the population 

overtime than the raw data suggests. 
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Appendix 

Figure A1: Mean HAZ Scores and IMR, by Survey Years 

    

Note: These bar graphs plot the mean HAZ Scores and mean infant deaths by the three survey years – 1993, 1998 and 

2005 in our sample.  

 

Figure A2: Infant Mortality Change, by Child Characteristics 

    

 Note: The first graph shows how change in infant mortality varies by birth order. The changes in infant mortality are 

calculated by changes in mean infant deaths by birth order over 1993 to 2005, divided by mean infant mortality over 

that cell in 1993 and multiplied by 100. The second graph plots a bar graph of infant mortality changes for males and 

females where male is denoted by female=0. 



40 
 

Figure A3: Infant Mortality Trends, by Gender and Birth Order 

   

Note: This graph shows the decline in infant deaths overtime (1980-2005) by gender. Panel 2 plots the mean infant 

deaths by birth order for the two survey years, 1993 and 2005. 

 

 

Figure A4: Changes in HAZ (1993-2005), by Gender and Birth Order 

      

Note: The first graph shows how change in HAZ varies by birth order, where change is defined as the difference 

between mean HAZ by birth order between 1993 and 2005, divided by HAZ in 1993 and multiplied by 100. The 

second graph plots a bar graph of HAZ changes for males and females where male is denoted by female=0. 
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Table A1: First-Stage Probit Estimates (Marginal Effects) 

 (1)  (2)  (3)  

Dependent Variable Survival till 1 year Survival till 1 month Survival till 1 year 

Delivery 
0.0076*** 

(0.002) 

0.0038** 

(0.0019) 

0.0104*** 

(0.002) 

Female 
0.010*** 

(0.003) 

0.007*** 

(0.002) 

0.010*** 

(0.003) 

Multiple 
-0.24*** 

(0.012) 

-0.195*** 

(0.013) 

-0.24*** 

(0.012) 

Piped water 
0.007 

(0.004) 

0.004 

(0.023) 

0.009** 

(0.004) 

No toilet 
-0.006*** 

(0.002) 

-0.006*** 

(0.016) 

-0.008*** 

(0.003) 

Electricity 
0.007*** 

(0.002) 

0.007*** 

(0.002) 

0.01*** 

(0.002) 

Mother’s Age at Birth 
0.0014** 

(0.0005) 

0.0011*** 

(0.0002) 

0.0022** 

(0.0002) 

State FE YES YES YES 

Cohort FE YES NO NO 

Observations 93999 94614 94614 

Note: These are the first stage probit estimates of deriving the inverse Mills ratio. Other included variables are birth 

dummy, female interacted with birth dummy, survey year, month of birth, caste, religion, and state dummies. Mother 

cohorts are also included in (1). Standard errors are clustered at the state level. 

Table A2: Correlation between inverse Mills Ratio and independent variables 

Inverse Mills Ratio (1) 1-year survival (2) 1-year survival (3) 1-month survival 

Female -0.0441 -0.0491 -0.1065 

Multiple 0.5971 0.6511 0.7195 

Interview Year -0.1885 -0.2041 -0.1262 

Month of birth 0.0212 0.0235 0.000 

Caste -0.0968 -0.1076 -0.0714 

Religion -0.1620 -0.1804 -0.1774 

Mother’s Age at Birth -0.1681 -0.1902 -0.2243 

Piped water -0.2316 -0.2547 -0.1954 

No toilet 0.3743 0.4117 0.3459 

Electricity -0.3574 -0.3925 -0.3240 

State FE YES YES YES 

Cohort FE YES NO NO 

Note: These are the pairwise correlations of the inverse Mills ratio with other independent variables in the substantive 

equation. 
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