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Pushdown Automata Correspond to Context Free

Grammars

Doug Baldwin
Department of Mathematics, SUNY Geneseo

May 2018

The main relationship between context free grammars and pushdown automata
is that both models define the same languages. In other words, every con-
text free language is accepted by some pushdown automaton, and every push-
down automaton accepts a context free language. This document proves part of
this claim for the pushdown automaton model used in Maheshwari and Smid’s
text [2]. Specifically, the following pages prove that every pushdown automaton
in that model accepts a context free language.

1 Preliminaries

The main claim is. . .

Theorem 1. If P = (Σ,Γ, Q, δ, q0) is a pushdown automaton, then L(P ) is
context free.

Proof. As detailed in the following sections, a context free grammar G can be
constructed from P such that L(G) = L(P ). Since every context free grammar
generates a context free language, the existence of G proves that L(P ) is context
free.

Theorems similar to Theorem 1 appear in almost all automata theory texts
[1, 3]. What makes the proof for Maheshwari and Smid’s automata more com-
plicated than those other proofs is that Maheshwari and Smid allow automata to
make transitions that read the input tape without advancing it (i.e., transitions
with tape action “N”). Such transitions allow automata to “peek” at an input
symbol and make decisions based on it while also saving it to use in picking
later transitions. This ability to peek at the next input symbol is unusual in

Copyright ( c©) 2018 by Doug Baldwin. Licensed under a Creative Commons Attribution
4.0 International (CC BY 4.0) license. See https://creativecommons.org/licenses/by/4.0/ for
license terms.
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Figure 1: A pushdown automaton configuration.

pushdown automata, but it is widely use in parsing context free languages, and
is called “lookahead.” In Maheshwari and Smid’s automata, lookahead happens
whenever an automaton makes a transition raA → sNX. From the moment
the automaton makes such a transition until it makes its next transition with
tape action “R,” the tape head is stationary over the a, and so the automaton
cannot make transitions that require any other tape symbol. It is sometimes
convenient to say that the automaton “has” lookahead a, or is computing “with”
lookahead a, in this situation. Between a transition with tape action “R” and
the next transition with action “N” the automaton has no lookahead; it can be
helpful to think of the lookahead being the empty string ε in this situation. This
convention allows us to treat lookahead as a string of either 1 or 0 symbols, and
there are places in the following that take advantage of that treatment.

Maheshwari and Smid use a graphical presentation of pushdown automaton
configurations, as in Figure 1. Because the proof of Theorem 1 needs to talk at
length about configurations, it is helpful to also have a textual notation for them.
This document uses the notation (r, w,X) to indicate a configuration in which
the automaton is in state r, has string w at and to the right of the tape head,
and has string X on its stack. If there is a lookahead symbol, it will be the first
symbol of w; the blank at the end of w is normally not shown. The first symbol
of X is at the top of the stack. Thus, for example, if the automaton in Figure 1
were in state q3, its textual configuration would be (q3, ai . . . an, Ak . . . A1$).

A textual notation for configurations also provides a concise notation for
summarizing computations. The notation (r, w,X) ` (s, u, Y ) means that an
automaton can move in a single transition from configuration (r, w,X) to con-
figuration (s, u, Y ). Similarly, (r, w,X) `∗ (s, u, Y ) (note the “*”) means the
automaton can move from (r, w,X) to (s, u, Y ) in zero or more transitions.

Sections 2 and 3 are the full proof of Theorem 1. Figure 2 is a “roadmap”
that may clarify how the details in those sections contribute to the overall result.
Section 2 explains how to construct grammar G to generate the strings that P
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Figure 2: A “roadmap” to the proof.

accepts, without actually proving that G does that. Section 3 presents the
proof, via five lemmas whose results are tied together by a final corollary. Two
of the lemmas, the “Lookahead Lemmas,” help reason about how G describes
lookahead in P . The “Oblivious Lemma” says that computations in P cannot
depend on information too far away on the input tape or too far down the
stack; this helps decompose computations by P into parts that correspond to
variables in G. Lemmas 4 and 5 are the heart of the proof. The first basically
says (although the exact phrasing is more general) that every string generated
by G is accepted by P , while the second says that every string accepted by P
is generated by G. The main theorem follows directly from these results, in
Corollary 3.

2 The Construction

Because a pushdown automaton must empty its stack in order to accept its
input, the process of shrinking the stack by one symbol is a key step towards
accepting input. But this is a “process,” not just a single transition, because
in one transition an automaton can both remove the top symbol from the stack
and add any number of new symbols in its place. The size of the stack only
decreases when all of these replacements for a removed symbol have also been
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removed. But of course the replacements may also be replaced, so it can take a
long time before the automaton makes enough transitions that remove symbols
without replacing them (transitions of the forms raA→ sRε or raA→ sNε) to
clear away the original symbol and all of its replacements. Eventually, however,
this must happen if the automaton is going to accept its input, and when it does
the original symbol is said to have been “cleared” from the stack. In general,
a computation that clears symbol A from the stack can also continue on and
remove symbols below A from the stack. However, there is always a shortest
computation that clears A, i.e., a computation that stops as soon as A and the
last symbol generated from it have been removed and before anything below A
has been used. This notion of a shortest computation to clear A can be stated
more precisely as

Definition 1. Let (r, wu,AX) and (s, u,X) be configurations of pushdown
automaton P , for some states r and s, strings w ∈ Σ∗, u ∈ (Σ ∪ {2})∗, and
X ∈ Γ∗, and stack symbol A. A computation by P that takes it from (r, wu,AX)
to (s, u,X) is a shortest such computation if it never removes any symbol of X
from the stack.

Realizing that clearing symbols from the stack is central to acceptance pro-
vides a way to construct a grammar whose derivations in some sense mimic
accepting computations by P . In particular, given P = (Σ,Γ, Q, δ, q0), let
grammar G = (V,Σ, R, S), where the variable set V consists of start symbol
S and a collection of variables denoted VqaArb. In each variable VqaArb, q and
r are states from Q, a and b are elements of Σ∪{2, ε}, and A is a stack symbol
from Γ. Intuitively, VqaArb represents the strings that P reads from its tape
during a shortest computation that clears A from the stack and takes the au-
tomaton from state q with lookahead symbol a to state r with lookahead b. If
the automaton has no lookahead in state q or r then a or b is ε.

The rules of the grammar, R, are as follows:

1. For every transition in P of the form qaA→ s1RBn . . . B2B1, with a 6= 2,
there are rules of the forms

VqaArb → aVs1εB1s2b2Vs2b2B2s3b3 . . .VsnbnBnrb and
VqεArb → aVs1εB1s2b2Vs2b2B2s3b3 . . .VsnbnBnrb

for all states s1 . . . sn and r, and all b2 . . . bn, b ∈ Σ ∪ {2, ε}.

2. For every transition in P of the form qaA → s1NBn . . . B2B1, there are
rules of the forms

VqaArb → Vs1aB1s2b2Vs2b2B2s3b3 . . .VsnbnBnrb and
VqεArb → Vs1aB1s2b2Vs2b2B2s3b3 . . .VsnbnBnrb

for all states s1 . . . sn and r, and all b2 . . . bn, b ∈ Σ ∪ {2, ε}.
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3. For every transition in P of the form qaA → rRε, with a 6= 2, there are
rules of the forms

VqaArε → a and
VqεArε → a

4. For every transition in P of the form qaA → rNε, there are rules of the
forms

VqaAra → ε and
VqεAra → ε

5. Finally, G contains rules of the forms

S → Vq0ε$rε and
S → Vq0ε$r2

for all states r.

3 Correctness

As suggested by the roadmap in Figure 2, the proof that L(G) really does
equal L(P ) works by showing that each language is a subset of the other. First,
however, it’s necessary to prove some supporting lemmas. The first two describe
how the lookahead symbols embedded in grammar variables actually appear (or
not) in strings derived from those variables.

Lemma 1 (First Lookahead Lemma). Let q and r be states, a and b be members
of Σ∪{2}, and A be a stack symbol, such that VqaArb derives the empty string.
Then b = a.

Proof. The proof is by induction on the length of the derivation. (In this and all
following proofs, assume for the sake of concreteness that derivations are left-
most derivations; since derivations from context free grammars are independent
of order, this assumption doesn’t affect the generality of the proofs.)

For the base case, suppose the derivation has only one step. The only rule
in G that derives ε in a single step from a variable of the form VqaArb with
a ∈ Σ ∪ {2} is VqaAra → ε, which has a = b.

For the induction, assume that a = b in any derivation VqaArb ⇒∗ ε of at
most k ≥ 1 steps. Consider a derivation of k + 1 steps. The first step in this
derivation must use a rule of the form

VqaArb → Vs1aB1s2b2Vs2b2B2s3b3 . . .VsnbnBnrb.

Since the entire derivation produces the empty string in k+ 1 steps, each of the
variables on the right side of this rule also derives the empty string, and does
so in at most k steps. Thus for every variable VsibiBisi+1bi+1

where bi 6= ε, the
induction hypothesis guarantees that bi+1 = bi. And in fact no variable with
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bi = ε can be used in this derivation. (Suppose otherwise, and let VsibiBisi+1bi+1

be the leftmost such variable. The induction hypothesis applies to all preceding
variables Vs1aB1s2b2 through Vsi−1bi−1Bi−1sibi , and so a = b2 = . . . = bi. But
since a 6= ε, this also means bi 6= ε, which contradicts the assumption that
bi is ε.) Since the induction hypothesis applies to each variable used in the
derivation, it follows that a = b1 = b2 = . . . = b.

The First Lookahead Lemma generalizes to certain strings of variables: if

Vs1a1A1s2a2 . . .Vsi−1ai−1Ai−1siaiVsiaiAisi+1ai+1
. . .VsnanAnsn+1an+1

⇒∗ ε

then a1 = a2 = . . . = an+1. This generalization is useful enough to state and
prove formally:

Corollary 1. Let s1, . . . sn+1 be states in Q, a1 . . . an+1 be members of Σ∪{2},
and A1 . . . An be symbols in Γ such that

Vs1a1A1s2a2 . . .Vsi−1ai−1Ai−1siaiVsiaiAisi+1ai+1
. . .VsnanAnsn+1an+1

⇒∗ ε

Then a1 = a2 = . . . = an+1.

Proof. The proof is by contradiction. Suppose that the lookahead symbols ai
are not all equal. Then there must be some variable, VsjajAjsj+1aj+1

for which
aj 6= aj+1. But since the entire string of variables derives the empty string,
each individual variable must too, and so in particular VsjajAjsj+1aj+1

⇒∗ ε.
Now by the First Lookahead Lemma, aj = aj+1, which contradicts the choice
of VsjajAjsj+1aj+1 as having aj 6= aj+1. Thus there can be no such variable, and
so a1 = a2 = . . . = an+1.

Lemma 2 (Second Lookahead Lemma). Let q and r be states, a and b be
members of Σ ∪ {2}, and A be a stack symbol, such that VqaArb derives a
non-empty string w. Then the leftmost symbol in w is a.

Proof. The proof is by induction on the number of rewriting steps until the
leftmost symbol of w appears.

For the base case, suppose the leftmost symbol appears after one rewriting.
Then the first rewriting step must use either a rule of the form

VqaArb → aVs1εB1s2b2Vs2b2B2s3b3 . . .VsnbnBnrb

from construction rule 1 or
VqaArε → a

from construction rule 3. In both cases the derived string begins with a.

For the induction step, assume that whenever a derivation VqaArb ⇒∗ w
uses at most k ≥ 1 rewriting steps to produce the leftmost symbol of w, that
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symbol is a. Consider a derivation in which the leftmost symbol of w appears
after k + 1 rewritings. This derivation must begin with a step of the form

VqaArb → Vs1aB1s2b2Vs2b2B2s3b3 . . .VsnbnBnrb.

Since w is non-empty, some one of the variables from the right side, let it be
VsibiBisi+1bi+1 , derives the leftmost symbol of w; the prefix Vs1aB1s2b2 . . .Vsi−1bi−1Bi−1sibi

derives the empty string. If that prefix isn’t empty, a = b2 = . . . = bi, by the
corollary to the First Lookahead Lemma, while if the prefix is empty then i = 1
and so bi is actually a. In either case the variable that derives the leftmost
symbol of w is of the form VsiaBisi+1bi+1

. This variable derives the leftmost
symbol of w in at most k steps and a ∈ Σ∪{2}, so by the induction hypothesis
the leftmost symbol of w is a.

Like the First Lookahead Lemma, the second also generalizes to strings, and
the generalization is again worth proving:

Corollary 2. Let s1, . . . sn+1 be states in Q, a1 . . . an+1 be members of Σ∪{2},
and A1 . . . An be symbols in Γ such that

Vs1a1A1s2a2 . . .Vsi−1ai−1Ai−1siaiVsiaiAisi+1ai+1 . . .VsnanAnsn+1an+1 ⇒∗ w

for some non-empty string w. Then the leftmost symbol in w is a1.

Proof. Since w is non-empty, some variable, let it be VsjajAjsj+1aj+1
, derives the

leftmost symbol of w, while the prefix Vs1a1A1s2a2 . . .Vsj−1aj−1Aj−1sjaj derives
the empty string. If this prefix isn’t empty, then aj = a1 from the corollary to
the First Lookahead Lemma. If the prefix is empty, then j = 1. In either case
the variable that derives the leftmost symbol of w is of the form Vsia1Aisi+1ai+1

,
which by the Second Lookahead Lemma derives a string that begins with a1.

The next lemma formalizes an intuitively sensible idea, namely that com-
putations by pushdown automata aren’t influenced by input beyond that ex-
amined by the computation, or by stack contents below those examined by the
computation. In other words, pushdown automata are oblivious to such extra
information, and, for that matter, to whether it exists at all.

Lemma 3 (Oblivious Lemma). Let q and r be states in Q, w be a string in Σ∗,
a be a symbol in Σ∪{2}, u be a string from (Σ∪{2})∗, A be a symbol from Γ,
and X be a string from Γ∗. Furthermore, suppose P has a shortest computation
that takes it from configuration (q, wau,AX) to configuration (r, au,X). Then
P also has shortest computations that take it from (q, wav,AY ) to (r, av, Y ) for
all strings v ∈ (Σ ∪ {2})∗ and Y ∈ Γ∗.

Proof. The computation that takes P from (q, wau,AX) to (r, au,X) can’t
depend on any part of u, because to do so it would have to move past at least
a on the tape. Further, because this is a shortest computation, it can’t depend
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on any part of X. Therefore, the computation would proceed in exactly the
same fashion if there were different strings, v and Y , following a and below A.
Because the computation proceeds in exactly the same fashion, in particular
it never removes any symbol of Y from the stack, and so is still a shortest
computation.

We now turn to the main lemmas of the proof. The first essentially says
that any string derived by G corresponds to a computation in P :

Lemma 4. Let q and r be states in P , a and b be elements of Σ∪ {2, ε}, A be
a symbol from Γ, and w be a string in Σ∗, such that VqaArb ⇒∗ w in G. Then
(q, wb,A) `∗ (r, b, ε) in P .

Proof. The proof is by induction on the length of the derivation of w.

For the base case, suppose the derivation has only one step. Two parts of the
construction generate rules that can directly derive strings of terminals, namely
parts 3 and 4. We consider each separately:

1. Rules of the forms
VqcArε → c and
VqεArε → c

from part 3, created from transitions of the form qcA → rRε. With one
of these rules as the only step in the derivation of w, w must equal c.
Furthermore, from configuration (q, wb,A) = (q, cb, A), P can take the
transition to reach configuration (r, b, ε), and so (q, wb,A) `∗ (r, b, ε).

2. Rules of the forms
VqcArc → ε and
VqεArc → ε

from part 4, created from transitions of the form qcA→ rNε. In order to
use either of these rules in a derivation of the form VqaArb ⇒∗ w, c must
equal b and w must equal ε. Applying these equalities to configuration
(q, wb,A) in P yields (q, wb,A) = (q, εc, A) = (q, c, A). From this config-
uration, the transition qcA → rNε takes the automaton to configuration
(r, c, ε) = (r, b, ε), and so (q, wb,A) `∗ (r, b, ε).

For the induction step, assume that whenever VqaArb ⇒∗ w in at most k ≥ 1
steps in G, (q, wb,A) `∗ (r, b, ε) in P . Consider how derivations of k + 1 steps
must proceed. Once again there are two possibilities, corresponding to parts 1
and 2 in the construction:

1. The derivation begins by using a rule from part 1, either

VqaArb → aVs1εB1s2b2Vs2b2B2s3b3 . . .VsnbnBnrb
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or
VqεArb → aVs1εB1s2b2Vs2b2B2s3b3 . . .VsnbnBnrb.

Both of these rules imply that w is of the form w = aw1w2 . . . wn where
VsibiBisi+1bi+1

⇒∗ wi (taking b1 to be ε, sn+1 to be r, and bn+1 to be b).
The derivation of w then proceeds as

VqaArb → aVs1εB1s2b2Vs2b2B2s3b3 . . .VsnbnBnrb (1)

⇒∗ aw1Vs2b2B2s3b3 . . .VsnbnBnrb

. . .

⇒∗ aw1w2 . . . wn = w

Now consider P in configuration (q, wb,A) = (q, aw1w2 . . . wnb, A). The
rule used in step (1) of the derivation corresponds to a transition qaA→
s1RBn . . . B2B1, a transition that takes P from (q, aw1w2 . . . wnb, A) to
(s1, w1w2 . . . wnb, B1B2 . . . Bn). From this configuration, P begins a series
of computations corresponding to the variables VsibiBisi+1bi+1

. Specifi-
cally, each of the variables has a derivation VsibiBisi+1bi+1

⇒∗ wi, which
takes at most k steps. Thus by the induction hypothesis and the Oblivious
Lemma, P would have computations

(si, wiwi+1 . . . wnb, BiBi+1 . . . Bn) `∗ (si+1, wi+1 . . . wnb, Bi+1 . . . Bn)

if the symbol following each wi in wi+1 . . . wnb were bi+1. To see that
it is, consider the possible values for bi+1: if bi+1 = ε, then wi+1 can
be written as wi+1 = εwi+1 and so wi is trivially followed by bi+1. If
bi+1 6= ε, then the Lookahead Lemmas and their corollaries guarantee that
either wi+1 . . . wn is non-empty and begins with bi+1, or that wi+1 . . . wn
is empty but bi+1 = b. In both cases, wi is in fact followed by bi+1,
and so P does indeed have a computation that takes it from configura-
tion (si, wiwi+1 . . . wnb, BiBi+1 . . . Bn) to (si+1, wi+1 . . . wnb, Bi+1 . . . Bn).
The collective effect of these computations is

(q, wb,A) ` (s1, w1w2 . . . wnb, B1B2 . . . Bn)

`∗ (s2, w2 . . . wnb, B2 . . . Bn)

`∗ . . .

`∗ (r, b, ε).

2. The derivation begins by using a rule from part 2, either

VqaArb → Vs1aB1s2b2Vs2b2B2s3b3 . . .VsnbnBnrb

or
VqεArb → Vs1aB1s2b2Vs2b2B2s3b3 . . .VsnbnBnrb.

These rules in G correspond to a transition in P of the form

qaA→ s1NB1B2 . . . Bn. (2)
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We can then write w as w = w1w2 . . . wn where VsibiBisi+1bi+1 ⇒∗ wi
(letting b1 = a, sn+1 = r, and bn+1 = b) and reason from the Looka-
head Lemmas and their corollaries that w1w2 . . . wnb begins with a, ei-
ther because the first non-empty wi is derived from VsiaBisi+1bi+1

or
because w1w2 . . . wn is empty and a = b. Thus P can take transition
(2) from configuration (q, wb,A) to configuration (s1, wb,B1B2 . . . Bn) =
(s1, w1w2 . . . wnb, B1B2 . . . Bn). Now just as in case 1, for each derivation
VsibiBisi+1bi+1

⇒∗ wi, there is a computation

(si, wiwi+1 . . . wnb, BiBi+1 . . . Bn) `∗ (si+1, wi+1 . . . wnb, Bi+1 . . . Bn)

in P . Continuing as in case 1, the collective effect of the initial transition
and these computations is (q, wb,A) `∗ (r, b, ε).

This completes the inductive argument that for all derivations in G of
the form VqaArb ⇒∗ w, there is a series of transitions in P through which
(q, wb,A) `∗ (r, b, ε).

The second main lemma says that certain computations in P correspond to
strings derived by G:

Lemma 5. Let q and r be states, b be a symbol in Σ∪{2}, w be a string from Σ∗,
a be the leftmost symbol in wb, and A be a symbol in Γ such that (q, wb,A) `∗
(r, b, ε) in P . Then if this computation by P ends with a lookahead symbol
(which must be b), VqaArb ⇒∗ w and VqεArb ⇒∗ w in G; if the computation by
P does not end with a lookahead symbol, VqaArε ⇒∗ w and VqεArε ⇒∗ w in G.

Proof. The proof is by induction on the number of transitions taken by P during
the computation (q, wb,A) `∗ (r, b, ε).

For the base case, suppose the computation involves only one transition.
Since a transition moves the tape head past either 0 or 1 input positions, there
are two possibilities for this transition:

1. A transition of the form qbA→ rNε that moves the tape head 0 positions.
Since this transition does not move the tape head, it ends with lookahead
symbol b, and the tape configuration after the transition (i.e., b) is the
same as the tape configuration before (wb), so w = ε. Thus a, the leftmost
symbol in wb, must be b. Corresponding to transition qbA→ rNε, step 4
in the construction created rules VqbArb → ε and VqεArb → ε. Thus,
we have a transition with lookahead symbol b, and derivations VqbArb =
VqaArb ⇒∗ ε = w and VqεArb ⇒∗ w.

2. A transition of the form qaA→ rRε that moves the tape head 1 position.
Since this transition moves the tape head past a, the tape configuration
before the transition must consist of a followed by the tape configuration
after the transition, i.e., wb = ab and so w = a. Furthermore, step 3 in
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the construction of G created rules VqaArε → a and VqεArε → a from the
transition. Thus we have a transition with no lookahead, and VqaArε ⇒∗

a = w and VqεArε ⇒∗ w.

For the induction step, suppose that the lemma holds whenever P has a
computation (q, wb,A) `∗ (r, b, ε) with at most k ≥ 1 transitions. Consider a
computation (q, wb,A) `∗ (r, b, ε) with k + 1 transitions. Because every tran-
sition in a pushdown automaton removes a symbol from the stack, the first of
these transitions must replace A with some other symbol or symbols in order
for there to be something for the subsequent transitions to remove. As in the
base case, such a first transition can move the tape head either 0 positions or 1
position:

1. Suppose P moves the tape head 0 positions, i.e., the first transition is
of the form qaA → s1NBn . . . B2B1. The configuration resulting from
this transition is (s1, wb,B1B2 . . . Bn), and the automaton has lookahead
symbol a. Corresponding to the transition, construction step 2 created
rules

VqaArc → Vs1aB1s2b2Vs2b2B2s3b3 . . .VsnbnBnrc and
VqεArc → Vs1aB1s2b2Vs2b2B2s3b3 . . .VsnbnBnrc

(3)

in G, for all states s1 through sn and all lookahead values c and b2 through
bn in Σ ∪ {2, ε}. These rules can begin two derivations in G, namely

VqaArc ⇒ Vs1aB1s2b2Vs2b2B2s3b3 . . .VsnbnBnrc and
VqεArc ⇒ Vs1aB1s2b2Vs2b2B2s3b3 . . .VsnbnBnrc

(4)

In order to eventually reach (r, b, ε), the automaton must clear symbols B1

through Bn from the stack. As it clears each, it also moves through part of
w, so we can write w as w = w1w2 . . . wn such that wi is the part of w that
the automaton moves its tape head past during the shortest computation
that clears Bi from the stack. More formally, for each i, there are states
si and si+1 (with sn+1 = r) such that

(si, wiwi+1 . . . wn, BiBi+1 . . . Bn) `∗ (si+1, wi+1 . . . wn, Bi+1 . . . Bn) (5)

via a shortest computation. Because construction step 2 creates rules (3)
for all states, there must be one such pair of rules in which, for every index
i, the states that subscript VsibiBisi+1bi+1

exactly match the states in the
computation

(si, wiwi+1 . . . wnb, BiBi+1 . . . Bn) `∗ (si+1, wi+1 . . . wnb, Bi+1 . . . Bn).

The same is also true of the lookahead symbols, because construction
step 2 creates rules (3) for all combinations of states and lookahead sym-
bols, so we can simply pick bi to be the leftmost symbol in wiwi+1 . . . wnb.
This choice ensures that if the computation that reads past wi ends with
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a lookahead symbol, that symbol must be bi+1. So we now know that
P clears the Bi from the stack in a series of computations of form (5),
and that there is a pair of rules of form (3) whose variables are sub-
scripted with exactly the states and (potential) lookahead symbols of those
computations. Each of these computations uses at most k transitions.
Furthermore, for each of these computations, the Oblivious Lemma says
that the same computation takes P from configuration (si, wibi+1, Bi) to
(si+1, bi+1, ε). Thus, by the induction hypothesis G must have derivations
VsibiBisi+1bi+1

⇒∗ wi if the computation by P uses bi+1 as lookahead,
and Vs1biBisi+1ε ⇒∗ wi if it doesn’t. Thus the derivations begun in (4)
continue by rewriting the variables on the right, i.e.,

VqaArc ⇒ Vs1aB1s2b2Vs2b2B2s3b3 . . .VsnbnBnrc

⇒∗ w1Vs2b2B2s3b3 . . .VsnbnBnrc

. . .
⇒∗ w1w2 . . . wn = w

VqεArc ⇒ Vs1aB1s2b2Vs2b2B2s3b3 . . .VsnbnBnrc

⇒∗ w1Vs2b2B2s3b3 . . .VsnbnBnrc

. . .
⇒∗ w1w2 . . . wn = w

(6)

The computation for the final step is (sn, wnb, Bn) `∗ (r, b, ε) and the
corresponding derivation is VsnbnBnrc ⇒∗ wn. If the computation uses
b as lookahead, then from the instance of (3) in which c = b there are
complete derivations of w

VqaArb ⇒∗ w and
VqεArb ⇒∗ w.

On the other hand, if the final computation does not use b as lookahead,
there is an instance of (3) in which c = ε, and the complete derivations of
w are

VqaArε ⇒∗ w and
VqεArε ⇒∗ w.

In all cases, we have VqaArb ⇒∗ w and VqεArb ⇒∗ w in G if the computa-
tion (q, wb,A) `∗ (r, b, ε) uses b as a lookahead symbol, and VqaArε ⇒∗ w
and VqεArε ⇒∗ w if it doesn’t.

2. Alternatively, suppose P ’s first transition moves the tape head 1 position
right, i.e., it uses a transition of the form qaA → s1RBn . . . B2B1. Since
this transition moves the tape head past a, a must be the first symbol
of w and we can write w = aw1w2 . . . wn where, as in case 1, wi is the
substring of w that P reads past while clearing Bi from the stack. From
this transition, construction rule 1 created rules in G of the forms

VqaArc → aVs1εB1s2b2Vs2b2B2s3b3 . . .VsnbnBnrc

VqεArc → aVs1εB1s2b2Vs2b2B2s3b3 . . .VsnbnBnrc
(7)
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for all states s1 . . . sn, and all lookahead values c and b2 . . . bn in Σ∪{2, ε}.
These rules provide the beginning of two derivations in G, namely

VqaArc ⇒ aVs1εB1s2b2Vs2b2B2s3b3 . . .VsnbnBnrc

VqεArc ⇒ aVs1εB1s2b2Vs2b2B2s3b3 . . .VsnbnBnrc

Reasoning as in case 1, P clears each Bi from the stack through a com-
putation of the form

(si, wiwi+1 . . . wn, BiBi+1 . . . Bn) `∗ (si+1, wi+1 . . . wn, Bi+1 . . . Bn)

and there are rules of form (7) that use the same states and lookahead
symbols in their variables, so that corresponding to each of these compu-
tations, VsibiBisi+1bi+1 ⇒∗ wi. The collective result is thus, as it was in
case 1, that VqaArc ⇒∗ w and VqεArc ⇒∗ w. Finally, and again as argued
in case 1, we can have c = b if P used b as lookhead at the end of its
computation, and c = ε if not.

This completes the inductive argument that if (q, wb,A) `∗ (r, b, ε), then
VqaArb ⇒∗ w and VqεArb ⇒∗ w in G if the computation in P ends with looka-
head symbol b and VqaArε ⇒∗ w and VqεArε ⇒∗ w in G if the computation does
not end with a lookahead symbol.

Finally, we can prove the main theorem by tying together lemmas 4 and 5:

Corollary 3. For all strings w ∈ Σ∗, w ∈ L(G) if and only if w ∈ L(P ).

Proof. For the first direction, suppose w ∈ L(G). Then from construction step 5,
w must be derived from Vq0ε$rε or Vq0ε$r2, for some state r. For the first of
these derivations, lemma 4 says that (q0, w, $) `∗ (r, ε, ε), i.e., P accepts w.
Similarly, for the second derivation, lemma 4 says that (q0, w2, $) `∗ (r,2, ε),
which is also an accepting computation.

For the other direction, suppose w ∈ L(P ). Then there is a computation in
P whereby (q0, w2, $) `∗ (r,2, ε) for some state r. Then by lemma 5, we have
that Vq0ε$r2 ⇒∗ w in G if P uses the blank as lookahead, and Vq0ε$rε ⇒∗ w if
P does not use the blank. By construction step 5, S can rewrite to both Vq0ε$r2

and Vq0ε$rε, no matter what state r is, and so G derives w.

Although the proof was long, we have now seen that for any pushdown
automaton, it is possible to construct a context free grammar whose language
is the same as the automaton’s. Thus every pushdown automaton accepts a
context free language.
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4 Exercises

1. One of the fine points about Maheshwari and Smid’s pushdown automata
is that they only accept if the tape head is on the first blank when the
stack becomes empty. In other words, an automaton that finishes reading
some input but then moves right beyond the first blank does not accept
that input. In terms of our construction, this means that G should never
generate strings with blanks at the end. What in the construction ensures
this property?

2. Instead of allowing pushdown automata to use lookahead, authors such
as [1, 3] allow them to use “epsilon transitions,” i.e., transitions that do
not read the tape at all (nor do such transitions advance the tape). Show
that for every pushdown automaton with lookahead (but not epsilon tran-
sitions) there is a pushdown automaton with epsilon transitions (but not
lookahead) that accepts the same language. Hints: consult [1] or [3] for
more detailed definitions of pushdown automata with epsilon transitions.
Consider simulating lookahead by “remembering” an input symbol in the
automaton’s state.
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