
SUNY Geneseo SUNY Geneseo

KnightScholar KnightScholar

Mathematics faculty/staff works By Department

12-2011

Is Computer Science a Relevant Academic Discipline for the 21st Is Computer Science a Relevant Academic Discipline for the 21st

Century Century

Doug Baldwin
SUNY Geneseo, baldwin@geneseo.edu

Follow this and additional works at: https://knightscholar.geneseo.edu/math-faculty

Recommended Citation Recommended Citation
Baldwin, Doug, "Is Computer Science a Relevant Academic Discipline for the 21st Century" (2011).
Mathematics faculty/staff works. 4.
https://knightscholar.geneseo.edu/math-faculty/4

This Article is brought to you for free and open access by the By Department at KnightScholar. It has been
accepted for inclusion in Mathematics faculty/staff works by an authorized administrator of KnightScholar. For
more information, please contact KnightScholar@geneseo.edu.

https://knightscholar.geneseo.edu/
https://knightscholar.geneseo.edu/math-faculty
https://knightscholar.geneseo.edu/research
https://knightscholar.geneseo.edu/math-faculty?utm_source=knightscholar.geneseo.edu%2Fmath-faculty%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knightscholar.geneseo.edu/math-faculty/4?utm_source=knightscholar.geneseo.edu%2Fmath-faculty%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:KnightScholar@geneseo.edu

1

Is Computer Science a Relevant Academic Discipline

for the 21st Century?

Doug Baldwin

Department of Computer Science

SUNY Geneseo

At least in the United States, the answer to the title question seems to be “no.” Far

from being seen as a “discipline,” i.e., an area of research and study with a distinctive

body of knowledge and methods of inquiry, computing in general is now seen as body of

technology (both hardware and software) to be applied in other areas. This view is

coming to define “computing,” sweeping up students, educators, and industry leaders on

its way. What this view of computing as technology overlooks, however, are computing’s

theoretical and scientific foundations in computer science.* The longer we neglect these

foundations and the deeper we subordinate them to other interests, the weaker the entire

computing enterprise becomes.

Until about the year 2000, “computer science” as an academic discipline studied most

things related to computing. “Computer engineering” concerned itself with hardware

aspects of computing, and “software engineering” with the effective production of

software, but by and large computing was taught and studied by departments of computer

science. In the decade from 2000 to 2010 this model disintegrated. Undergraduate and

secondary enrollments in computer science dropped. Many colleges and universities

responded by creating programs in “information technology,” “information science,” or

“information systems.” Interdisciplinary programs with computing components, such as

bioinformatics, game design or web design, appeared. Undergraduate software

engineering programs proliferated. In all cases, the hope was that the more applied

aspects of computing would appeal to students even if traditional computer science did

not. Computer science programs themselves began to place more emphasis on

computing’s applications. At the secondary level, high schools, in which financial

* This essay distinguishes “computing” and “computer science,” recognizing that

“computer science” is only one of many computing fields today. I use the term “computer

science” to mean an area of study or research concerned with computing broadly, but

particularly addressing its theoretical foundations.

2

pressures were mounting and computer science was generally an elective, were only too

happy to eliminate computer science offerings outright; a handful of colleges followed

suit.

Today, a norm in which the study of computing is dispersed into application areas

appears to be emerging, and stakeholders, for the most part, seem content with it. In this

context, “application areas” denotes a wide variety of disciplines concerned with creating

or managing software or hardware applications, ranging from software and computer

engineering to the various “information” fields to traditionally non-computing fields that

now have computational branches (e.g., computational sciences, digital humanities, etc.)

Enrollments in applied computing disciplines are strong now, even while enrollments

in computer science rebound. For instance, the 2009-10 Taulbee survey, which now

surveys Ph.D.-granting departments in “information” fields (so-called “I” departments) as

well as computer science and computer engineering, finds significant numbers of students

in the I departments particularly at the bachelors and masters levels: just under 1/6 of

bachelors degree recipients, and about 1/5 of masters degrees. While the survey’s authors

caution that I school data is too new to draw statistical conclusions from, the numbers are

substantial enough to suggest that these programs are not mere passing fads.

In college and university computer science departments, applications of computer

science have a new prominence. For example, “media computation,” an introduction to

programming in the context of its application to image and sound manipulation, has

spread to a wide variety of colleges, universities, and high schools (see

http://coweb.cc.gatech.edu/mediaComp-teach/37 for some examples). Some computer

science programs require “applied’ computer science subjects (e.g., numerical methods,

computational science, computer graphics, artificial intelligence, robotics, etc.) as core

parts of their majors (http://www.cs.dartmouth.edu/site-content/site/a-major-redesign.php

is a particularly clear example). Research interests featured on department Web pages

frequently include problems motivated by, or results of interest to, other disciplines

(biology, biochemistry, and medicine seem particularly common); my own research

addresses problems in computer graphics motivated by visualizations for particle physics.

At the high school level, computing seems firmly set as a supporting skill for the

traditional sciences and mathematics. This is exactly how the recent NRC “Framework

for K-12 Science Education” addresses computing (see

http://www.nap.edu/catalog.php?record_id=13165), and the Common Core State

Standards for Mathematics

(http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf) make frequent

3

mention of computer algebra systems and similar tools for understanding or visualizing

mathematical ideas, but no mention of learning computer science or computational

thinking. Despite influential countervailing voices, notably advocacy efforts by the

Computer Science Teachers’ Association and ACM, and a report on STEM education

from the President’s Council of Advisors on Science and Technology (“Prepare and

Inspire: K-12 Education in Science, Technology, Engineering, and Math (STEM) for

America's Future”) computer science is on track to become a service discipline in

America’s secondary curriculum.

Does it matter if computer science disperses over a myriad of applied computing fields

and disciplines that draw on computing for their own ends? One of the triumphs of

computing is that it has transformed nearly every other area of human activity, and to

some extent this dispersal is just a logical consequence of that transformation.

However, if time amplifies the tendency to see computing only as a supporting service

for other disciplines, as seems to be happening in K-12 standards, the results will be

catastrophic, for several reasons:

1. Neglected topics. Significant computing ideas can be and have been developed in

other disciplines, but some fundamental areas of computer science have no call on

those disciplines’ attention. For example, past work on basic theories of what it

means to compute has led to powerful and widely used tools—regular

expressions, parsers for programming and other languages, etc. There are still

open questions in this area, for instance whether fast factoring algorithms exist or

what the potential of quantum computing is, whose answers, if found, will impact

applications in security and many other areas. Yet people working on day-to-day

problems in these areas are unlikely to have the inclination, time, or theoretical

background to work on those questions. Similar arguments could be made about

programming language semantics and applications concerned with parallel

computing, security, etc. Neglect is a concern in education as much as in research:

students who aren’t exposed to certain areas of computing will eventually become

professionals who don’t appreciate the value of those areas, if they know the areas

exist at all.

2. Isolated sub-disciplines. As computing fragments into application areas,

computing education and research will concentrate in those areas’ curricula and

publications. While each area can appropriately teach its distinctive problems and

methods, it is unnecessarily duplicative for each to teach common foundations in

programming, basic algorithms, or standard data representations. Further, students

in fields that don’t teach computing application courses nonetheless benefit from

a general exposure to computational thinking, but it is unclear where they will get

this exposure if computing comes to be taught only in application curricula (e.g.,

4

should a philosophy major learn computational thinking in a computational

science course? in a business information systems course? perhaps in a

communication arts Web design course?) Common foundations also mean that

research results from one application area are often relevant to others, but sharing

of such results is difficult if the areas don’t have publications in common

(although scholarly search services such as Google Scholar may to some extent

mitigate this problem).

 Computing’s fragmentation is well under way, and is an unavoidable consequence of

its maturation. However, fragmentation does not have to mean a collection of technology

applications with no core science. The emerging computing disciplines need to agree

what each does and does not cover, and what common scientific foundation they rest on.

More importantly, they need to reach out to computational sub-disciplines in the other

sciences, business, humanities, and elsewhere to help them see that their applications also

rest on the same foundation. Similarly, the computing community needs to educate policy

makers and K-12 standards setters about the relationship between science and

applications in computing. If these things happen successfully, computer science can

stand in the same relationship to the applied computing areas as the more traditional

sciences stand to their applied science and engineering fields. Failure, on the other hand,

will leave computing a collection of sterile disciplines unable in the long run to deliver on

the social and economic promises they offer.

	Is Computer Science a Relevant Academic Discipline for the 21st Century
	Recommended Citation

	General Document

