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Preface

Preface to the First Edition

This book covers the central topics of first-order mathematical logic in a way
that can reasonably be completed in a single semester. From the core ideas
of languages, structures, and deductions we move on to prove the Soundness
and Completeness Theorems, the Compactness Theorem, and Godel’s First
and Second Incompleteness Theorems. There is an introduction to some
topics in model theory along the way, but I have tried to keep the text
tightly focused.

One choice that I have made in my presentation has been to start right
in on the predicate logic, without discussing propositional logic first. I
present the material in this way as I believe that it frees up time later
in the course to be spent on more abstract and difficult topics. It has
been my experience in teaching from preliminary versions of this book that
students have responded well to this choice. Students have seen truth tables
before, and what is lost in not seeing a discussion of the completeness of
the propositional logic is more than compensated for in the extra time for
Godel’s Theorem.

I believe that most of the topics I cover really deserve to be in a first
course in mathematical logic. Some will question my inclusion of the
Lowenheim—Skolem Theorems, and I freely admit that they are included
mostly because I think they are so neat. If time presses you, that sec-
tion might be omitted. You may also want to soft-pedal some of the more
technical results in Chapter 5.

The list of topics that I have slighted or omitted from the book is de-
pressingly large. I do not say enough about recursion theory or model
theory. 1 say nothing about linear logic or modal logic or second-order
logic. All of these topics are interesting and important, but I believe that
they are best left to other courses. One semester is, I believe, enough time
to cover the material outlined in this book relatively thoroughly and at a
reasonable pace for the student.

Thanks for choosing my book. I would love to hear how it works for
you.

ix
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To the Student

Welcome! I am really thrilled that you are interested in mathematical logic
and that we will be looking at it together! I hope that my book will serve
you well and will help to introduce you to an area of mathematics that I
have found fascinating and rewarding.

Mathematical logic is absolutely central to mathematics, philosophy,
and advanced computer science. The concepts that we discuss in this
book—models and structures, completeness and incompleteness—are used
by mathematicians in every branch of the subject. Furthermore, logic pro-
vides a link between mathematics and philosophy, and between mathe-
matics and theoretical computer science. It is a subject with increasing
applications and of great intrinsic interest.

One of the tasks that I set for myself as I wrote this book was to be
mindful of the audience, so let me tell you the audience that I am trying to
reach with this book: third- or fourth-year undergraduate students, most
likely mathematics students. The student I have in mind may not have
taken very many upper-division mathematics courses. He or she may have
had a course in linear algebra, or perhaps a course in discrete mathematics.
Neither of these courses is a prerequisite for understanding the material in
this book, but some familiarity with proving things will be required.

In fact, you don’t need to know very much mathematics at all to follow
this text. So if you are a philosopher or a computer scientist, you should
not find any of the core arguments beyond your grasp. You do, however,
have to work abstractly on occasion. But that is hard for all of us. My
suggestion is that when you are lost in a sea of abstraction, write down
three examples and see if they can tell you what is going on.

At several points in the text there are asides that are indented and start
with the word Chaff. 1 hope you will find these comments helpful. They
are designed to restate difficult points or emphasize important things that
may get lost along the way. Sometimes they are there just to break up the
exposition. But these asides really are chaff, in the sense that if they were
blown away in the wind, the mathematics that is left would be correct and
secure. But do look at them—they are supposed to make your life easier.

Just like every other math text, there are exercises and problems for you
to work out. Please try to at least think about the problems. Mathematics
is a contact sport, and until you are writing things down and trying to use
and apply the material you have been studying, you don’t really know the
subject. I have tried to include problems of different levels of difficulty, so
some will be almost trivial and others will give you a chance to show off.

This is an elementary textbook, but elementary does not mean easy. It
was not easy when we learned to add, or read, or write. You will find the
going tough at times as we work our way through some very difficult and
technical results. But the major theorems of the course—Godel’s Com-
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pleteness Theorem, the incompleteness results of Godel and Rosser, the
Compactness Theorem, the Lowenheim—Skolem Theorem—provide won-
derful insights into the nature of our subject. What makes the study of
mathematical logic worthwhile is that it exposes the core of our field. We
see the strength and power of mathematics, as well as its limitations. The
struggle is well worth it. Enjoy the ride and see the sights.

Thanks

Writing a book like this is a daunting process, and this particular book
would never have been produced without the help of many people. Among
my many teachers and colleagues I would like to express my heartfelt thanks
to Andreas Blass and Claude Laflamme for their careful readings of early
versions of the book, for the many helpful suggestions they made, and for
the many errors they caught.

I am also indebted to Paul Bankston of Marquette University, William
G. Farris of the University of Arizona at Tucson, and Jiping Liu of the Uni-
versity of Lethbridge for their efforts in reviewing the text. Their thoughtful
comments and suggestions have made me look smarter and made my book
much better.

The Department of Mathematics at SUNY Geneseo has been very sup-
portive of my efforts, and I would also like to thank the many students at
Oberlin and at Geneseo who have listened to me lecture about logic, who
have challenged me and rewarded me as I have tried to bring this field alive
for them. The chance to work with undergraduates was what brought me
into this field, and they have never (well, hardly ever) disappointed me.

Much of the writing of this book took place when I was on sabbatical
during the fall semester of 1998. The Department of Mathematics and
Statistics at the University of Calgary graciously hosted me during that
time so I could concentrate on my writing.

I would also like to thank Michael and Jim Henle. On September 10,
1975, Michael told a story in Math 13 about a barber who shaves every
man in his town that doesn’t shave himself, and that story planted the
seed of my interest in logic. Twenty-two years later, when I was speaking
with Jim about my interest in possibly writing a textbook, he told me that
he thought that I should approach my writing as a creative activity, and if
the book was in me, it would come out well. His comment helped give me
the confidence to dive into this project.

The typesetting of this book depended upon the existence of Leslie
Lamport’s HTEX. I thank everyone who has worked on this typesetting
system over the years, and I owe a special debt to David M. Jones for his
Index package, and to Piet von Oostrum for Fancyheadings.

Many people at Prentice Hall have worked very hard to make this book
a reality. In particular, George Lobell, Gale Epps, and Lynn Savino have
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been very helpful and caring. You would not be holding this book without
their efforts.

But most of all, I would like to thank my wife, Sharon, and my children,
Heather and Eric. Writing this book has been like raising another child.
But the real family and the real children mean so much more.

Preface to the Second Edition
From Chris:

I was very happy with the reaction to the first edition of A Friendly In-
troduction. I heard from many readers with comments, errors (both small
and embarrassingly large), and requests for solutions to the exercises. The
many kind words and thoughtful comments were and are much appreciated,
and most, if not all, of your suggestions have been incorporated into the
work you have before you. Thank you all!

As is often the case in publishing ventures, after a while the people at
Prentice-Hall thought that the volume of sales of my book was not worth
it to them, so they took the book out of print and returned the rights to
me. [ was very pleased when I received an email from Lars Kristiansen in
September of 2012 suggesting that we work together on a second edition of
the text and with the idea of including a section on computability theory
as well as solutions to some of the exercises, solutions that he had already
written up. This has allowed us to chart two paths to the incompleteness
theorems, splitting after the material in Chapter 4. Readers of the first
edition will find that the exposition in Chapters 5 and 6 follows a familiar
route, although the material there has been pretty thoroughly reworked. It
is also possible, if you choose, to move directly from Chapter 4 to Chapter
7 and see a development of computability theory that covers the Entschei-
dungsproblem, Hilbert’s 10th Problem, and Goédel’s First Incompleteness
Theorem.

I am more than happy to have had the chance to work with Lars on this
project for the last couple of years, and to have had his careful and creative
collaboration. Lars has added a great deal to the work and has improved
it in many ways. I am also in debt to the Department of Mathematics at
the University of Oslo for hosting me in Norway during a visit in 2013 so
that Lars and I could work on the revision face-to-face.

The staff at Milne Library of SUNY Geneseo have been most helpful
and supportive as we have moved toward bringing this second edition to
fruition. In particular, Cyril Oberlander, Katherine Pitcher, and Allison
Brown have been encouraging and comforting as we have worked through
the details of publication and production.

As in the first edition, I mostly have to thank my family. Eric and
Heather, you were two and five when the first edition came out. I don’t
think either of you will read this book, even now, but I hope you know that
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you are still my most important offspring. And Sharon, thanks to you for
all of your support and love. Also thanks for taking one for the team and
accompanying me to Oslo when I had to work with Lars. I know what a
sacrifice that was.

This edition of the book is much longer than the original, and I am
confident that it is a whole lot better. But the focus of the book has
not changed: Lars and I believe that we have outlined an introduction to
important areas of mathematical logic, culminating in the Incompleteness
Theorems, that can reasonably be covered in a one-semester upper division
undergraduate course. We hope that you agree!

From Lars:

First of all, I will say thank you to Chris for letting me in on this project. We
have worked very well together and complemented each other in a number
of respects.

I should also express my thanks to those who through the years have
shaped my academic taste and pursuits. They have in some sense con-
tributed to this book. Among them you find my teachers, colleagues and
students at the University of Oslo. I cannot mention them all — I can prob-
ably not even remember them all — but a few names that immediately come
to my mind are Stal Aanderaa, Herman Ruge Jervell (my PhD supervisor),
Dag Normann, and Mathias Barra.

Finally, I will like to thank Dag Normann and Amir Ben-Amram for
discussions and helpful comments on early versions of Chapter 7.

Our target group is undergraduate students that have reached a certain
level of mathematical maturity but do not know much formal logic — maybe
just some propositional logic — maybe nothing. It is the needs of the readers
in this group that we want to meet, and we have made our efforts to do so:
We have provided exercises of all degrees of difficulty, and we have provided
detailed solutions to quite a few of them. We have provided discussions and
explanations that might prevent unnecessary misunderstandings. We have
stuck to topics that should be of interest to the majority of our target group.
We have tried to motivate our definitions and theorems . . . and we have done
a number of other things that hopefully will help an undergraduate student
that wants to learn mathematical logic.

This book conveys some of the main insights from what we today call
classic mathematical logic. We tend to associate the word “classic” with
something old. But the theorems in this book are not old. Not if we think
about the pyramids. Neither if we think about Pythagoras, Euclid, and
Diophantus — or even Newton and Leibniz. All the theorems in this book
were conceived after my grandparents were born, some of them even after
I was born. They are insights won by the past few generations. Many
things that seem very important to us today will be more or less forgotten
in a hundred years or so. The essence of classic mathematical logic will be



xiv Preface

passed on from generation to generation as long as the human civilization
exists. So, in some sense, this is a book for the future.

I dedicate this book to the coming generations and, in particular, to my
seven-year-old daughter Mille.



Chapter 1

Structures and Languages

Let us set the stage. In the middle of the nineteenth cen-
tury, questions concerning the foundations of mathematics be-
gan to appear. Motivated by developments in geometry and in
calculus, and pushed forward by results in set theory, mathe-
maticians and logicians tried to create a system of axioms for
mathematics, in particular, arithmetic. As systems were pro-
posed, notably by the German mathematician Gottlob Frege,
errors and paradoxes were discovered. So other systems were
advanced.

At the International Congress of Mathematicians, a meeting
held in Paris in 1900, David Hilbert proposed a list of 23 prob-
lems that the mathematical community should attempt to solve
in the upcoming century. In stating the second of his problems,
Hilbert said:

But above all I wish to designate the following as
the most important among the numerous questions
which can be asked with regard to the axioms [of
arithmetic]: To prove that they are not contradictory,
that is, that a finite number of logical steps based
upon them can never lead to contradictory results.
(Quoted in [Feferman 98])

In other words, Hilbert challenged mathematicians to come up
with a set of axioms for arithmetic that were guaranteed to be
consistent, guaranteed to be paradox-free.

In the first two decades of the twentieth century, three major
schools of mathematical philosophy developed. The Platonists
held that mathematical objects had an existence independent
of human thought, and thus the job of mathematicians was to
discover the truths about these mathematical objects. Intu-
itionists, led by the Dutch mathematician L. E. J. Brouwer,
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held that mathematics should be restricted to concrete opera-
tions performed on finite structures. Since vast areas of modern
mathematics depended on using infinitary methods, Brouwer’s
position implied that most of the mathematics of the previous
3000 years should be discarded until the results could be re-
proved using finitistic arguments. Hilbert was appalled at this
suggestion and he became the leading exponent of the Formalist
school, which held that mathematics was nothing more than the
manipulation of meaningless symbols according to certain rules
and that the consistency of such a system was nothing more
than saying that the rules prohibited certain combinations of
the symbols from occurring.

Hilbert developed a plan to refute the Intuitionist position
that most of mathematics was suspect. He proposed to prove,
using finite methods that the Intuitionists would accept, that all
of classical mathematics was consistent. By using finite methods
in his consistency proof, Hilbert was sure that his proof would
be accepted by Brouwer and his followers, and then the math-
ematical community would be able to return to what Hilbert
considered the more important work of advancing mathemat-
ical knowledge. In the 1920s many mathematicians became
actively involved in Hilbert’s project, and there were several
partial results that seemed to indicate that Hilbert’s plan could
be accomplished. Then came the shock.

On Sunday, September 7, 1930, at the Conference on Epis-
temology of the Exact Sciences held in Kénigsberg, Germany,
a 24-year-old Austrian mathematician named Kurt Gédel an-
nounced that he could show that there is a sentence such that
the sentence is true but not provable in a formal system of clas-
sical mathematics. In 1931 Gédel published the proof of this
claim along with the proof of his Second Incompleteness The-
orem, which said that no consistent formal system of mathe-
matics could prove its own consistency. Thus Hilbert’s program
was impossible, and there would be no finitistic proof that the
axioms of arithmetic were consistent.

Mathematics, which had reigned for centuries as the embod-
iment of certainty, had lost that role. Thus we find ourselves
in a situation where we cannot prove that mathematics is con-
sistent. Although we believe in our hearts that mathematics
is consistent, we know in our brains that we will not be able
to prove that fact, unless we are wrong. For if we are wrong,
mathematics is inconsistent. And (as we will see) if mathemat-
ics is inconsistent, then it can prove anything, including the
statement which says that mathematics is consistent.

So do we throw our hands in the air and give up the study
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of mathematics? Of course not! Mathematics is still useful, it
is still beautiful, and it is still interesting. It is an intellectual
challenge. It compels us to think about great ideas and difficult
problems. It is a wonderful field of study, with rewards for
us all. What we have learned from the developments of the
nineteenth and twentieth centuries is that we must temper our
hubris. Although we can still agree with Gauss, who said that,
“Mathematics is the Queen of the Sciences...” she no longer
can claim to be a product of an immaculate conception.

Our study of mathematical logic will take us to a point where
we can understand the statement and the proof of Godel’s In-
completeness Theorems. On our way there, we will study for-
mal languages, mathematical structures, and a certain deduc-
tive system. The type of thinking, the type of mathematics
that we will do, may be unfamiliar to you, and it will probably
be tough going at times. But the theorems that we will prove
are among the most revolutionary mathematical results of the
twentieth century. So your efforts will be well rewarded. Work
hard. Have fun.

1.1 Naively

Let us begin by talking informally about mathematical structures and
mathematical languages.

There is no doubt that you have worked with mathematical models
in several previous mathematics courses, although in all likelihood it was
not pointed out to you at the time. For example, if you have taken a
course in linear algebra, you have some experience working with R?, R3,
and R™ as examples of vector spaces. In high school geometry you learned
that the plane is a “model” of Euclid’s axioms for geometry. Perhaps you
have taken a class in abstract algebra, where you saw several examples of
groups: The integers under addition, permutation groups, and the group of
invertible n X n matrices with the operation of matrix multiplication are all
examples of groups—they are “models” of the group axioms. All of these
are mathematical models, or structures. Different structures are used for
different purposes.

Suppose we think about a particular mathematical structure, for exam-
ple R3, the collection of ordered triples of real numbers. If we try to do
plane Euclidean geometry in R3, we fail miserably, as (for example) the
parallel postulate is false in this structure. On the other hand, if we want
to do linear algebra in R3, all is well and good, as we can think of the points
of R3 as vectors and let the scalars be real numbers. Then the axioms for a
real vector space are all true when interpreted in R3. We will say that R?
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is a model of the axioms for a vector space, whereas it is not a model for
Euclid’s axioms for geometry.

As you have no doubt noticed, our discussion has introduced two sep-
arate types of things to worry about. First, there are the mathematical
models, which you can think of as the mathematical worlds, or constructs.
Examples of these include R3, the collection of polynomials of degree 17,
the set of 3 x 2 matrices, and the real line. We have also been talking
about the axioms of geometry and vector spaces, and these are something
different. Let us discuss those axioms for a moment.

Just for the purposes of illustration, let us look at some of the axioms
which state that V is a real vector space. They are listed here both infor-
mally and in a more formal language:

Vector addition is commutative: (Yu € V)(Vv € V)u+v = v+ u.
There is a zero vector: (30 € V)(Vv € Vv +0 = v.
One times anything is itself: (Yv € V)1lv = v.

Don’t worry if the formal language is not familiar to you at this point; it
suffices to notice that there is a formal language. But do let us point out a
few things that you probably accepted without question. The addition sign
that is in the first two axioms is not the same plus sign that you were using
when you learned to add in first grade. Or rather, it is the same sign, but
you interpret that sign differently. If the vector space under consideration
is R3, you know that as far as the first two axioms up there are concerned,
addition is vector addition. Similarly, the 0 in the second axiom is not the
real number 0; rather, it is the zero vector. Also, the multiplication in the
third axiom that is indicated by the juxtaposition of the 1 and the v is
the scalar multiplication of the vector space, not the multiplication of third
grade.

So it seems that we have to be able to look at some symbols in a partic-
ular formal language and then take those symbols and relate them in some
way to a mathematical structure. Different interpretations of the symbols
will lead to different conclusions as regards the truth of the formal state-
ment. For example, if we take the commutivity axiom above and work with
the space V being R? but interpret the sign + as standing for cross product
instead of vector addition, we see that the axiom is no longer true, as cross
product is not commutative.

These, then, are our next objectives: to introduce formal languages, to
give an official definition of a mathematical structure, and to discuss truth
in those structures. Beauty will come later.
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1.2 Languages

We will be constructing a very restricted formal language, and our goal in
constructing that language will be to be able to form certain statements
about certain kinds of mathematical structures. For our work, it will be
necessary to be able to talk about constants, functions, and relations, and
so we will need symbols to represent them.

Chaff: Let us emphasize this once more. Right now we are
discussing the syntax of our language, the marks on the paper.
We are not going to worry about the semantics, or meaning, of
those marks until later—at least not formally. But it is silly to
pretend that the intended meanings do not drive our choice of
symbols and the way in which we use them. If we want to discuss
left-hemi-semi-demi-rings, our formal language should include
the function and relation symbols that mathematicians in this
lucrative and exciting field customarily use, not the symbols
involved in chess, bridge, or right-hemi-semi-para-fields. It is
not our goal to confuse anyone more than is necessary. So you
should probably go through the exercise right now of taking a
guess at a reasonable language to use if our intended field of
discussion was, say, the theory of the natural numbers. See
Exercise [Il

Definition 1.2.1. A first-order language £ is an infinite collection of
distinct symbols, no one of which is properly contained in another, sepa-
rated into the following categories:

1.
2.

Parentheses: (, ).
Connectives: V, —.
Quantifier: V.

Variables, one for each positive integer n: vy1,va,...,Up,.... The set
of variable symbols will be denoted Vars.

Equality symbol: =.
Constant symbols: Some set of zero or more symbols.

Function symbols: For each positive integer n, some set of zero or
more n-ary function symbols.

Relation symbols: For each positive integer n, some set of zero or
more n-ary relation symbols.



6 Chapter 1. Structures and Languages

To say that a function symbol is n-ary (or has arity n) means that it is
intended to represent a function of n variables. For example, + has arity 2.
Similarly, an n-ary relation symbol will be intended to represent a relation
on n-tuples of objects. This will be made formal in Definition [T.6.1]

To specify a language, all we have to do is determine which, if any,
constant, function, and relation symbols we wish to use. Many authors, by
the way, let the equality symbol be optional, or treat the equality symbol
as an ordinary binary (i.e., 2-ary) relation symbol. We will assume that
each language has the equality symbol, unless specifically noted.

Chaff: We ought to add a word about the phrase “no one of
which is properly contained in another,” which appears in this
definition. We have been quite vague about the meaning of the
word symbol, but you are supposed to be thinking about marks
made on a piece of paper. We will be constructing sequences of
symbols and trying to figure out what they mean in the next few
pages, and by not letting one symbol be contained in another,
we will find our job of interpreting sequences to be much easier.

For example, suppose that our language contained both the
constant symbol O and the constant symbol O (notice that the
first symbol is properly contained in the second). If you were
reading a sequence of symbols and ran across QC, it would be
impossible to decide if this was one symbol or a sequence of
two symbols. By not allowing symbols to be contained in other
symbols, this type of confusion is avoided, leaving the field open
for other types of confusion to take its place.

Example 1.2.2. Suppose that we were taking an abstract algebra course
and we wanted to specify the language of groups. A group consists of a set
and a binary operation that has certain properties. Among those properties
is the existence of an identity element for the operation. Thus, we could
decide that our language will contain one constant symbol for the identity
element, one binary operation symbol, and no relation symbols. We would
get
Le is {0,+},

where 0 is the constant symbol and + is a binary function symbol. Or
perhaps we would like to write our groups using the operation as multipli-
cation. Then a reasonable choice could be

LG is {1771 7'}3

which includes not only the constant symbol 1 and the binary function
symbol -, but also a unary (or 1-ary) function symbol ~!, which is designed
to pick out the inverse of an element of the group. As you can see, there is
a fair bit of choice involved in designing a language.
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Example 1.2.3. The language of set theory is not very complicated at all.
We will include one binary relation symbol, €, and that is all:

LsT is {6}

The idea is that this symbol will be used to represent the elementhood
relation, so the interpretation of the string x € y will be that the set z is an
element of the set y. You might be tempted to add other relation symbols,
such as C, or constant symbols, such as (), but it will be easier to define
such symbols in terms of more primitive symbols. Not easier in terms of
readability, but easier in terms of proving things about the language.

In general, to specify a language we need to list the constant symbols,
the function symbols, and the relation symbols. There can be infinitely
many [in fact, uncountably many (cf. the Appendix)] of each. So, here is a
specification of a language:

Lis {c1,co, ..., [0 pall2) Ry patia)

Here, the ¢;’s are the constant symbols, the fia(fi)’

s are the function sym-
bols, and the R?(R")’s are the relation symbols. The superscripts on the
function and relation symbols indicate the arity of the associated symbols,
so a is a mapping that assigns a natural number to a string that begins with
an f or an R, followed by a subscripted ordinal. Thus, an official function

symbol might look like this:
223
17 »

which would say that the function that will be associated with the 17th
function symbol is a function of 223 variables. Fortunately, such dreadful
detail will rarely be needed. We will usually see only unary or binary
function symbols and the arity of each symbol will be stated once. Then
the authors will trust that the context will remind the patient reader of
each symbol’s arity.

1.2.1 Exercises

1. Carefully write out the symbols that you would want to have in a lan-
guage L that you intend to use to write statements of elementary al-
gebra. Indicate which of the symbols are constant symbols, and the
arity of the function and relation symbols that you choose. Now write
out another language, M (i.e., another list of symbols) with the same
number of constant symbols, function symbols, and relation symbols
that you would not want to use for elementary algebra. Think about
the value of good notation.

2. What are good examples of unary (1-ary) functions? Binary functions?
Can you find natural examples of relations with arity 1, 2, 3, and 47 As
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you think about this problem, stay mindful of the difference between
the function and the function symbol, between the relation and the
relation symbol.

In the town of Sneezblatt there are three eating establishments: McBurg-
ers, Chez Fancy, and Sven’s Tandoori Palace. Think for a minute about
statements that you might want to make about these restaurants, and
then write out £, the formal language for your theory of restaurants.
Have fun with this, but try to include both function and relation sym-
bols in £. What interpretations are you planning for your symbols?

You have been put in charge of drawing up the schedule for a basketball
league. This league involves eight teams, each of which must play each
of the other seven teams exactly two times: once at home and once
on the road. Think of a reasonable language for this situation. What
constants would you need? Do you need any relation symbols? Function
symbols? It would be nice if your finished schedule did not have any
team playing two games on the same day. Can you think of a way
to state this using the formal symbols that you have chosen? Can you
express the sentence which states that each team plays every other team
exactly two times?

Let’s work out a language for elementary trigonometry. To get you
started, let us suggest that you start off with lots of constant symbols—
one for each real number. It is tempting to use the symbol 7 to stand
for the number seven, but this runs into problems. (Do you see why
this is illegal? 7, 77, 7/3, ....) Now, what functions would you like
to discuss? Think of symbols for them. What are the arities of your
function symbols? Do not forget that you need symbols for addition
and multiplication! What relation symbols would you like to use?

A computer language is another example of a language. For example,
the symbol := might be a binary function symbol, where the interpre-
tation of the instruction

=7
would be to alter the internal state of the computer by placing the value
7 into the position in memory referenced by the variable . Think about
the function associated with the binary function symbol

if __ then

What are the inputs into this function? What sort of thing does the
function do? Look at the statement

If x4y >3, then 2 := 7.

Identify the function symbols, constant symbols, and relation symbols.
What are the arities of each function and relation symbol?
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7. What would be a good language for the theory of vector spaces? This
problem is slightly more difficult, as there are two different varieties of
objects, scalars and vectors, and you have to be able to tell them apart.
Write out the axioms of vector spaces in your language. Or, better
yet, use a language that includes a unary function symbol for each real
number so that scalars don’t exist as objects at all!

8. It is not actually necessary to include function symbols in the language,
since a function is just a special kind of relation. Just to see an example,
think about the function f : N — N defined by f(z) = z2. Remem-
bering that a relation on N x N is just a set of ordered pairs of natural
numbers, find a relation R on N x N such that (z,y) is an element of R
if and only if y = f(z). Convince yourself that you could do the same
for any function defined on any domain. What condition must be true
if a relation R on A x B is to be a function mapping A to B?

1.3 Terms and Formulas

Suppose that £ is the language {0,+, <}, and we are going to use L to
discuss portions of arithmetic. If we were to write down the string of
symbols from L,

(v1 +0) < vy,

and the string
v17) (¥ + +(((0,

you would probably agree that the first string conveyed some meaning, even
if that meaning were incorrect, while the second string was meaningless. It
is our goal in this section to carefully define which strings of symbols of
L we will use. In other words, we will select the strings that will have
meaning.

Now, the point of having a language is to be able to make statements
about certain kinds of mathematical systems. Thus, we will want the state-
ments in our language to have the ability to refer to objects in the mathe-
matical structures under consideration. So we will need some of the strings
in our language to refer to those objects. Those strings are called the terms
of L.

Definition 1.3.1. If £ is a language, a term of £ is a nonempty finite
string ¢ of symbols from £ such that either:

1. t is a variable, or
2. t is a constant symbol, or

3. t := ftyty...t,, where f is an m-ary function symbol of £ and each
of the ¢; is a term of L.
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A couple of things about this definition need to be pointed out. First,
there is the symbol := in the third clause. The symbol := is not a part of
the language £. Rather it is a meta-linguistic symbol that means that the
strings of L£-symbols on each side of the := are identical. Probably the best
natural way to read clause 3. would be to say that “t is ftito...t,.”

The other thing to notice about Definition[T.3.T]is that this is a definition
by recursion, since in the third clause of the definition, ¢ is a term if it
contains substrings that are terms. Since the substrings of ¢ are shorter
(contain fewer symbols) than ¢, and as none of the symbols of £ are made
up of other symbols of £, this causes no problems.

Example 1.3.2. Let £ be the language {0,1,2,...,+, -}, with one constant
symbol for each natural number and two binary function symbols. Here are
some of the terms of £: 714, +32, - + 324. Notice that 123 is not a term
of L, but rather is a sequence of three terms in a row.

Chaff: The term +32 looks pretty annoying at this point,
but we will use this sort of notation (called Polish notation)
for functions rather than the infix notation (3 + 2) that you
are used to. We are not really being that odd here: You have
certainly seen some functions written in Polish notation: sin(x)
and f(z,y,z) come to mind. We are just being consistent in
treating addition in the same way. What makes it difficult is
that it is hard to remember that addition really is just another
function of two variables. But we are sure that by the end of
this book, you will be very comfortable with that idea and with
the notation that we are using.

A couple of points are probably worth emphasizing, just this once. No-
tice that in the application of the function symbols, there are no parentheses
and no commas. Also notice that all of our functions are written with the
operator on the left. So instead of 342, we write +32. The reason for this
is for consistency and to make sure that we can parse our expressions.

Let us give an example. Suppose that, in some language or other, we
wrote down the string of symbols O¥ 1 {## [. Assume that two of our
colleagues, Humphrey and Ingrid, were waiting in the hall while we wrote
down the string. If Humphrey came into the room and announced that our
string was a 3-ary function symbol followed by three terms, whereas Ingrid
proclaimed that the string was really a 4-ary relation symbol followed by
two terms, this would be rather confusing. It would be really confusing
if they were both correct! So we need to make sure that the strings that
we write down can be interpreted in only one way. This property, called
unique readability, is addressed in Exercise [7] of Section [1.4.1

Chaff: Unique readability is one of those things that, in
the opinion of the authors, is important to know, interesting to
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prove, and boring to read. Thus the proof is placed in (we do
not mean “relegated to”) the exercises.

Suppose that we look more carefully at the term - + 324. Assume for
now that the symbols in this term are supposed to be interpreted in the
usual way, so that - means multiply, + means add, and 3 means three. Then
if we add some parentheses to the term in order to clarify its meaning, we
get

(+32)1,
which ought to have the same meaning as -54, which is 20, just as you
suspected.

Rest assured that we will continue to use infix notation, commas, and
parentheses as seem warranted to increase the readability (by humans) of
this text. So ftits...t, will be written f(t1,t2,...,t,) and +32 will be
written 3 + 2, with the understanding that this is shorthand and that our
official version is the version given in Definition [1.3.1

The terms of £ play the role of the nouns of the language. To make
meaningful mathematical statements about some mathematical structure,
we will want to be able to make assertions about the objects of the structure.
These assertions will be the formulas of L.

Definition 1.3.3. If £ is a first-order language, a formula of L is a
nonempty finite string ¢ of symbols from £ such that either:

1. ¢ := = t1t9, where t; and ¢y are terms of L, or

2. ¢ := Rtits...t,, where R is an n-ary relation symbol of £ and ¢y, ¢s,
..., ty are all terms of L, or

3. ¢ := (—«), where « is a formula of £, or
4. ¢ := (aV B), where a and S are formulas of £, or
5. ¢ := (Vv)(a), where v is a variable and « is a formula of L.

If a formula 1) contains the subformula (Vv)(«) [meaning that the string
of symbols that constitute the formula (Vv)(«) is a substring of the string
of symbols that make up ], we will say that the scope of the quantifier V
is a. Any symbol in « will be said to lie within the scope of the quantifier
V. Notice that a formula v can have several different occurrences of the
symbol V, and each occurrence of the quantifier will have its own scope.
Also notice that one quantifier can lie within the scope of another.

The atomic formulas of £ are those formulas that satisfy clause (1)
or (2) of Definition m

You have undoubtedly noticed that there are no parentheses or commas
in the atomic formulas, and you have probably decided that we will continue
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to use both commas and infix notation as seems appropriate. You are
correct on both counts. So, instead of writing the official version

< 855550550

in a language containing constant symbol 0, unary function symbol S, and
binary relation symbol <, we will write

588850 < SSO
or (after some preliminary definitions)
5<2.

Also notice that we are using infix notation for the binary logical con-
nective V. We hope that this will make your life somewhat easier.

You will be asked in Exercise [§] in Section to prove that unique
readability holds for formulas as well as terms. We will, in our exposi-
tion, use different-size parentheses, different shapes of delimiters, and omit
parentheses in order to improve readability without (we hope) introducing
confusion on your part.

Notice that a term is not a formula! If the terms are the nouns of the
language, the formulas will be the statements. Statements can be either
true or false. Nouns cannot. Much confusion can be avoided if you keep
this simple dictum in mind.

For example, suppose that you are looking at a string of symbols and
you notice that the string does not contain either the symbol = or any other
relation symbol from the language. Such a string cannot be a formula, as

it makes no claim that can be true or false. The string might be a term, it
might be nonsense, but it cannot be a formula.

Chaff: We do hope that you have noticed that we are deal-
ing only with the syntax of our language here. We have not
mentioned that the symbol — will be used for denial, or that v
will mean “or,” or even that V means “for every.” Don’t worry,
they will mean what you think they should mean. Similarly, do
not worry about the fact that the definition of a formula left
out symbols for conjunctions, implications, and biconditionals.
We will get to them in good time.

1.3.1 Exercises

1. Suppose that the language £ consists of two constant symbols, < and
Q, a unary relation symbol ¥, a binary function symbol b, and a 3-
ary function symbol f. Write down at least three distinct terms of the
language £. Write down a couple of nonterms that look like they might
be terms and explain why they are not terms. Write a couple of formulas
and a couple of nonformulas that look like they ought to be formulas.
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2. The fact that we write all of our operations on the left is important
for unique readability. Suppose, for example, that we wrote our binary
operations in the middle (and did not allow the use of parentheses). If
our language included the binary function symbol #, then the term

uHFvHW

could be interpreted two ways. This can make a difference: Suppose
that the operation associated with the function symbol # is “subtract.”
Find three real numbers u, v, and w such that the two different interpre-
tations of u#v#w lead to different answers. Any nonassociative binary
function will yield another counterexample to unique readability. Can
you think of three such functions?

3. The language of number theory is
ENT is {Oa Sa +, Ev <}’

where the intended meanings of the symbols are as follows: 0 stands for
the number zero, S is the successor function S(z) = x + 1, the symbols
+, -, and < mean what you expect, and F stands for exponentiation,
so E(3,2) = 9. Assume that £yp-formulas will be interpreted with
respect to the nonnegative integers and write an £ yp-formula to express
the claim that p is a prime number. Can you write the statement of
Lagrange’s Theorem, which states that every natural number is the sum
of four squares?

Write a formula stating that there is no largest prime number. How
would we express the Goldbach Conjecture, that every even number
greater than two can be expressed as the sum of two primes?

What is the formal statement of the Twin Primes Conjecture, which
says that there are infinitely many pairs (x,y) such that  and y are
both prime and y = x + 27 The Bounded Gap Theorem, proven in
2013, says that there are infinitely many pairs of prime numbers that
differ by 70,000,000 or less. Write a formal statement of that theorem.

Use shorthand in your answers to this problem. For example, after you
have found the formula which says that p is prime, call the formula
Prime(p), and use Prime(p) in your later answers.

4. Suppose that our language has infinitely many constant symbols of the
form /) /... and no function or relation symbols other than =. Ex-
plain why this situation leads to problems by looking at the formula

="""_Where in our definitions do we outlaw this sort of problem?

1.4 Induction

You are familiar, no doubt, with proofs by induction. They are the bane
of most mathematics students from their first introduction in high school
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through the college years. It is our goal in this section to discuss the proofs
by induction that you know so well, put them in a different light, and then
generalize that notion of induction to a setting that will allow us to use
induction to prove things about terms and formulas rather than just the
natural numbers.

Just to remind you of the general form of a proof by induction on the
natural numbers, let us state and prove a familiar theorem, assuming for
the moment that the set of natural numbers is {1,2,3,...}.

Theorem 1.4.1. For every natural number n,

n(n—l—l).

1424.-. =
+2+4+---+n 5

Proof. If n = 1, simple computation shows that the equality holds. For the
inductive case, fix £ > 1 and assume that

k(k+1)

1424 +k=
+24-+ 5

If we add k + 1 to both sides of this equation, we get

k(k +1)

L+24-+k+(k+1)= 5

+(k+1),

and simplifying the right-hand side of this equation shows that

(k+1)((k+1)+1)
2 b

1424+ (k+1) =

finishing the inductive step, and the proof. O

As you look at the proof of this theorem, you notice that there is a base
case, when n = 1, and an inductive case. In the inductive step of the proof,
we prove the implication

If the formula holds for k, then the formula holds for k& + 1.

We prove this implication by assuming the antecedent, that the theorem
holds for a (fixed, but unknown) number k, and from that assumption
proving the consequent, that the theorem holds for the next number, k4 1.
Notice that this is not the same as assuming the theorem that we are trying
to prove. The theorem is a universal statement—it claims that a certain
formula holds for every natural number.

Looking at this from a slightly different angle, what we have done is to
construct a set of numbers with a certain property. If we let S stand for
the set of numbers for which our theorem holds, in our proof by induction
we show the following facts about S:



1.4. Induction 15

1. The number 1 is an element of S. We prove this explicitly in the base
case of the proof.

2. If the number k is an element of S, then the number k + 1 is an
element of S. This is the content of the inductive step of the proof.

But now, notice that we know that the collection of natural numbers
can be defined as the smallest set such that:

1. The number 1 is a natural number.
2. If k is a natural number, then k£ + 1 is a natural number.

So S, the collection of numbers for which the theorem holds, is identical
with the set of natural numbers, thus the theorem holds for every natural
number n, as needed. (If you caught the slight lie here, just substitute
“superset” where appropriate.)

So what makes a proof by induction work is the fact that the natural
numbers can be defined recursively. There is a base case, consisting of the
smallest natural number (“1 is a natural number”), and there is a recursive
case, showing how to construct bigger natural numbers from smaller ones
(“If k is a natural number, then k + 1 is a natural number”).

Now, let us look at Definition the definition of a formula. Notice
that the five clauses of the definition can be separated into two groups. The
first two clauses, the atomic formulas, are explicitly defined: For example,
the first case says that anything that is of the form = ¢1¢5 is a formula
if t; and ty are terms. These first two clauses form the base case of the
definition. The last three clauses are the recursive case, showing how if «
and § are formulas, they can be used to build more complex formulas, such
as (aV f) or (Vv)(«).

Now since the collection of formulas is defined recursively, we can use an
inductive-style proof when we want to prove that something is true about
every formula. The inductive proof will consist of two parts, a base case
and an inductive case. In the base case of the proof we will verify that
the theorem is true about every atomic formula—about every string that is
known to be a formula from the base case of the definition. In the inductive
step of the proof, we assume that the theorem is true about simple formulas
(o and B), and use that assumption to prove that the theorem holds a
more complicated formula ¢ that is generated by a recursive clause of the
definition. This method of proof is called induction on the complexity of
the formula, or induction on the structure of the formula.

There are (at least) two ways to think about the word “simple” in the
last paragraph. One way in which a formula « might be simpler than a
complicated formula ¢ is if « is a subformula of ¢. The following theorem,
although mildly interesting in its own right, is included here mostly so that
you can see an example of a proof by induction in this setting:
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Theorem 1.4.2. Suppose that ¢ is a formula in the language L. Then the
number of left parentheses occurring in ¢ is equal to the number of right
parentheses occurring in ¢.

Proof. We will present this proof in a fair bit of detail, in order to emphasize
the proof technique. As you become accustomed to proving theorems by
induction on complexity, not so much detail is needed.

Base Case. We begin our inductive proof with the base case, as you would
expect. Our theorem makes an assertion about all formulas, and the sim-
plest formulas are the atomic formulas. They constitute our base case.
Suppose that ¢ is an atomic formula. There are two varieties of atomic
formulas: Either ¢ begins with an equals sign followed by two terms, or ¢
begins with a relation symbol followed by several terms. As there are no
parentheses in any term (we are using the official definition of term, here),
there are no parentheses in ¢. Thus, there are as many left parentheses
as right parentheses in ¢, and we have established the theorem if ¢ is an
atomic formula.

Inductive Case. The inductive step of a proof by induction on complexity
of a formula takes the following form: Assume that ¢ is a formula by virtue
of clause (3), (4), or (5) of Definition[[.3.3] Also assume that the statement
of the theorem is true when applied to the formulas a and 5. With those
assumptions we will prove that the statement of the theorem is true when
applied to the formula ¢. Thus, as every formula is a formula either by
virtue of being an atomic formula or by application of clause (3), (4), or
(5) of the definition, we will have shown that the statement of the theorem
is true when applied to any formula, which has been our goal.

So, assume that « and 8 are formulas that contain equal numbers of
left and right parentheses. Suppose that there are k left parentheses and &
right parentheses in « and [ left parentheses and [ right parentheses in 5.

If ¢ is a formula by virtue of clause (3) of the definition, then ¢ := (—a).
We observe that there are k+ 1 left parentheses and k+ 1 right parentheses
in ¢, and thus ¢ has an equal number of left and right parentheses, as
needed.

If ¢ is a formula because of clause (4), then ¢ := (aV ), and ¢ contains
k+ 141 left and right parentheses, an equal number of each type.

Finally, if ¢ := (Vv)(«), then ¢ contains k + 2 left parentheses and k + 2
right parentheses, as needed.

This concludes the possibilities for the inductive case of the proof, so
we have established that in every formula, the number of left parentheses
is equal to the number of right parentheses. O

A second way in which we might structure a proof by induction on the
structure of the formula is to say that « is simpler than ¢ if the number of
connectives/quantifiers in « is less than the number in ¢. In this case one
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could argue that the induction argument is really an ordinary induction on
the natural numbers. Here is an outline of how such a proof might proceed:

Proof. We argue by induction on the structure of ¢.

Base Case. Assume ¢ has 0 connectives/quantifiers. This means that ¢ is
an atomic formula. {Insert argument establishing the theorem for atomic
formulas. }

Inductive Case. Assume that ¢ has k + 1 connectives/quantifiers. Then
either ¢ := —q, or ¢ := aV 8 or ¢ := (Va)a, and we can assume that the
theorem holds for every formula that has k or fewer connectives/quantifiers.
We now argue that the theorem holds for the formula ¢. {Insert arguments
for the three inductive cases.}

Between the base case and the inductive case we have established that
the theorem holds for ¢ no matter how many connectives/quantifiers the
formula ¢ contains, so by induction on the structure of ¢, we have estab-
lished that the theorem holds for all formulas ¢.

O

This might be a bit confusing on first glance, but the power of this
proof technique will become very evident as you work through the following
exercises and when we discuss the semantics of our language.

Notice also that the definition of a term (Definition is also a
recursive definition, so we can use induction on the complexity of a term
to prove that a theorem holds for every term.

1.4.1 Exercises

1. Prove, by ordinary induction on the natural numbers, that

)(2n+1
12+22+-~~+n2:n(n+ )6(n+ ).

2. Prove, by induction, that the sum of the interior angles in a convex
n-gon is (n — 2)180°. (A convex n-gon is a polygon with n sides, where
the interior angles are all less than 180°.)

3. Prove by induction that if A is a set consisting of n elements, then A
has 2™ subsets.

4. Suppose that £ is {0, f, g}, where 0 is a constant symbol, f is a binary
function symbol, and ¢ is a 4-ary function symbol. Use induction on
complexity to show that every L-term has an odd number of symbols.

5. If £ is {0, <}, where 0 is a constant symbol and < is a binary relation
symbol, show that the number of symbols in any formula is divisible by
3.
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If s and t are strings, we say that s is an initial segment of t if there is a
nonempty string u such that ¢ := su, where su is the string s followed
by the string u. For example, KuMQ is an initial segment of KUMQUAT
and +24 is an initial segment of +24u — v. Prove, by induction on
the complexity of s, that if s and ¢ are terms, then s is not an initial
segment of t. [Suggestion: The base case, when s is either a variable
or a constant symbol, should be easy. Then suppose that s is an initial
segment of ¢t and s := ftyts...t,, where you know that each t; is not
an initial segment of any other term. Look for a contradiction.]

A language is said to satisfy unique readability for terms if, for each
term ¢, t is in exactly one of the following categories:

(a) Variable
(b) Constant symbol

(c¢) Complex term

and furthermore, if ¢ is a complex term, then there is a unique function
symbol f and a unique sequence of terms tq,ts,...,t, such that t :=
ftita ... t,. Prove that our languages satisfy unique readability for
terms. [Suggestion: You mostly have to worry about uniqueness—for
example, suppose that t is ¢, a constant symbol. How do you know that
t is not also a complex term? Suppose that ¢ is ft1ts...t,. How do
you show that the f and the ¢;’s are unique? You may find Exercise [0]
useful.]

To say that a language satisfies unique readability for formulas is to say
that every formula ¢ is in exactly one of the following categories:

(a) Equality (if ¢ := = t1t2)
(b) Other atomic (if ¢ := Rityts ... t, for an n-ary relation symbol R)

)
)
(c) Negation
(d) Disjunction
)

(e) Quantified

Also, it must be that if ¢ is both = ¢ty and = t3t4, then ¢ is identical
to t3 and to is identical to t4, and similarly for other atomic formulas.
Furthermore, if (for example) ¢ is a negation (—«), then it must be
the case that there is not another formula 8 such that ¢ is also (=),
and similarly for disjunctions and quantified formulas. Prove that our
languages satisfy unique readability for formulas. You will want to look
at, and use, Exercise[7] You may have to prove an analog of Exercise[d]
in which it may be helpful to think about the parentheses in an initial
segment of a formula, in order to prove that no formula is an initial
segment of another formula.
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9. Take the proof of Theorem and write it out in the way that you
would present it as part of a homework assignment. Thus, you should
cut out all of the inessential motivation and present only what is needed
to make the proof work.

1.5 Sentences

Among the formulas in the language £, there are some in which we will be
especially interested. These are the sentences of L—the formulas that can
be either true or false in a given mathematical model.

Let us use an example to introduce a language that will be vitally im-
portant to us as we work through this book.

Definition 1.5.1. The language Lyr is {0,5,+,, E,<}, where 0 is a
constant symbol, S is a unary function symbol, 4, -, and F are binary
function symbols, and < is a binary relation symbol. This will be referred
to as the language of number theory.

Chaff: Although we are not fixing the meanings of these
symbols yet, we probably ought to tell you that the standard
interpretation of Ly7 will use 0, +, -, and < in the way that
you expect. The symbol S will stand for the successor function
that maps a number z to the number z + 1, and E will be used
for exponentiation: E32 is supposed to be 32.

Consider the following two formulas of Ly7:

—(Vo)[(y <z) Vv (y = 2)].
(Vo) (Vy)l(z <y) vV (z =y) V (y < )]

(Did you notice that we have begun using an informal presentation of
the formulas?)

The second formula should look familiar. It is nothing more than the
familiar trichotomy law of <, and you would agree that the second formula
is a true statement about the collection of natural numbers, where you are
interpreting < in the usual way.

The first formula above is different. It “says” that not every z is greater
than or equal to y. The truth of that statement is indeterminate: It depends
on what natural number y represents. The formula might be true, or it
might be false—it all depends on the value of y. So our goal in this section
is to separate the formulas of £ into one of two classes: the sentences (like
the second example above) and the nonsentences. To begin this task, we
must talk about free variables.
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Free variables are the variables upon which the truth value of a formula
may depend. The variable y is free in the first formula above. To draw an
analogy from calculus, if we look at

1
e
1t

the variable z is free in this expression, as the value of the integral depends
on the value of . The variable t is not free, and in fact it doesn’t make any
sense to decide on a value for t. The same distinction holds between free
and nonfree variables in an L-formula. Let us try to make things a little
more precise.

Definition 1.5.2. Suppose that v is a variable and ¢ is a formula. We will
say that v is free in ¢ if

1. ¢ is atomic and v occurs in (is a symbol in) ¢, or
2. ¢ :=(—a) and v is free in «, or
3. ¢:=(aV P) and v is free in at least one of o or S, or

4. ¢ := (Vu)(«) and v is not v and v is free in a.

Thus, if we look at the formula
V'UQ_‘(V’U:;)(’Ul = S(’UQ) V V3 = ’UQ),

the variable v; is free whereas the variables vo and vs are not free. A slightly
more complicated example is

(Vv1Vug (v + v2 = 0)) Vo, = S(0).

In this formula, v; is free whereas vs is not free. Especially when a formula is
presented informally, you must be careful about the scope of the quantifiers
and the placement of parentheses.

We will have occasion to use the informal notation Va¢(z). This will
mean that ¢ is a formula and z is among the free variables of ¢. If we then
write ¢(t), where ¢ is an L-term, that will denote the formula obtained by
taking ¢ and replacing each occurrence of the variable x with the term t.
This will all be defined more formally and more precisely in Definition[1.8.2

Definition 1.5.3. A sentence in a language £ is a formula of £ that
contains no free variables.

For example, if a language contained the constant symbols 0, 1, and 2
and the binary function symbol +, then the following are sentences: 14+1 =
2 and (Vz)(z + 1 = z). You are probably convinced that the first of these
is true and the second of these is false. In the next two sections we will see
that you might be correct. But then again, you might not be.
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1.5.1 Exercises

1.

For each of the following, find the free variables, if any, and decide if the
given formula is a sentence. The language includes a binary function
symbol +, a binary relation symbol <, and constant symbols 0 and 2.

(a) (V)(Vy)(z +y =2)
(b) (z +y < z)V (V2)(z < 0)
(c) (Vy)(y <)) v ((Vz)(z <y))

Explain precisely, using the definition of a free variable, how you know
that the variable vy is free in the formula

(‘v’vl)(ﬂ(V%)(vg =1 + ’U5)).
In mathematics, we often see statements such as sin?z + cos?z = 1.
Notice that this is not a sentence, as the variable x is free. But we all
agree that this statement is true, given the usual interpretations of the
symbols. How can we square this with the claim that sentences are the
formulas that can be either true or false?

If we look at the first of our example formulas in this section,

~(Vo)[(y <)V (y = )],

and we interpret the variables as ranging over the natural numbers, you
will probably agree that the formula is false if y represents the natural
number 0 and true if y represents any other number. (If you aren’t
happy with 0 being a natural number, then use 1.) On the other hand,
if we interpret the variables as ranging over the integers, what can we
say about the truth or falsehood of this formula? Can you think of an
interpretation for the symbols that would make sense if we try to apply
this formula to the collection of complex numbers?

A variable may occur several times in a given formula. For example,
the variable v; occurs four times in the formula

(Vm) [(1}1 = 1}3) V (’Ul = S’Ug) vV (O + vy <wv — SO)]

What should it mean for an occurrence of a variable to be free? Write a
definition that begins: The nth occurrence of a variable v in a formula
¢ is said to be free if .... An occurrence of v in ¢ that is not free is
said to be bound. Give an example of a formula in a suitable language
that contains both free and bound occurrences of a variable v.

Look at the formula

(V) (@ =y)] v [(v2)(z < 0)].
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If we denote this formula by ¢(z) and ¢ is the term SO0, find ¢(¢).
[Suggestion: The trick here is to see that there is a bit of a lie in the
discussion of ¢(t) in the text. Having completed Exercise [5| we can now
say that we only replace the free occurrences of the variable  when we
move from ¢(z) to ¢(t).]

1.6 Structures

Let us, by way of example, return to the language £y7 of number theory.
Recall that Ly is {0,S,+,+, E, <}, where 0 is a constant symbol, S is a
unary function symbol, +, -, and F are binary function symbols, and < is a
binary relation symbol. We now want to discuss the possible mathematical
structures in which we can interpret these symbols, and thus the formulas
and sentences of L.

“But wait!” cries the incredulous reader. “You just said that this is
the language of number theory, so certainly we already know what each of
those symbols means.”

It is certainly the case that you know an interpretation for these sym-
bols. The point of this section is that there are many different possible
interpretations for these symbols, and we want to be able to specify which
of those interpretations we have in mind at any particular moment.

Probably the interpretation you had in mind (what we will call the
standard model for number theory) works with the set of natural numbers
{0,1,2,3,...}. The symbol 0 stands for the number 0.

Chaff: Carefully, now! The symbol 0 is the mark on the
paper, the numeral. The number 0 is the thing that the numeral
0 represents. The numeral is something that you can see. The
number is something that you cannot see.

The symbol S is a unary function symbol, and the function for which
that symbol stands is the successor function that maps a number to the next
larger natural number. The symbols +, -, and E represent the functions of
addition, multiplication, and exponentiation, and the symbol < will be used
for the “less than” relation.

But that is only one of the ways that we might choose to interpret those
symbols. Another way to interpret all of those symbols would be to work
with the numbers 0 and 1, interpreting the symbol 0 as the number 0,
S as the function that maps 0 to 1 and 1 to 0, + as addition mod 2, - as
multiplication mod 2, and (just for variety) E as the function with constant
value 1. The symbol < can still stand for the relation “less than.”

Or, if we were in a slightly more bizarre mood, we could work in a
universe consisting of Beethoven, Picasso, and Ernie Banks, interpreting
the symbol 0 as Picasso, S as the identity function, < as equality, and each
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of the binary function symbols as the constant function with output Ernie
Banks.

The point is that there is nothing sacred about one mathematical struc-
ture as opposed to another. Without determining the structure under con-
sideration, without deciding how we wish to interpret the symbols of the
language, we have no way of talking about the truth or falsity of a sentence
as trivial as

(V’Ul)(’Ul < S(Ul))

Definition 1.6.1. Fix a language £. An L-structure 2 is a nonempty
set A, called the universe of 2, together with:

1. For each constant symbol ¢ of £, an element ¢® of A,
2. For each n-ary function symbol f of £, a function f% : A™ — A, and

3. For each n-ary relation symbol R of £, an n-ary relation R* on A
(i.e., a subset of A™).

Notice that the domain of the function f2 is the set A™, so f2 is defined
for all elements of A™. Later in the text we will have occasion to discuss
partial functions, those whose domain is a proper subset of A™, but for now
our functions are total functions, defined on all of the advertised domain.

Chaff: The letter 2 is a German Fraktur capital A. We
will also have occasion to use A’s friends, 6 and €. 9 will be
used for a particular structure involving the natural numbers.
The use of this typeface is traditional (which means this is the
way we learned it). For your handwritten work, probably using
capital script letters will be the best.

Often, we will write a structure as an ordered k-tuple, like this:
A= (A e3, R RY).

As you can see, the notation is starting to get out of hand once again,
and we will not hesitate to simplify and abbreviate when we believe that
we can do so without confusion. So, when we are working in Ly7, we will
often talk about the standard structure

m = (N70757+7'7E7<)7

where the constants, functions, and relations do not get the superscripts

they deserve, and the authors trust that you will interpret N as the collec-
tion {0, 1,2,...} of natural numbers, the symbol 0 to stand for the number
zero, + to stand for addition, S to stand for the successor function, and so
on. By the way, if you are not used to thinking of 0 as a natural number,
do not panic. Set theorists see 0 as the most natural of objects, so we tend
to include it in N without thinking about it.
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x | $%(x)

Oberon | Oberon
Titania | Bottom
Puck Titania
Bottom | Titania

+2 H Oberon \ Titania \ Puck \ Bottom
Oberon Puck Puck Puck Titania
Titania Puck Bottom | Oberon | Titania
Puck Bottom | Titania | Bottom | Titania
Bottom || Bottom | Bottom | Bottom | Oberon

2 H Oberon ‘ Titania Puck ‘ Bottom
Oberon || Oberon | Titania Puck Bottom
Titania || Titania | Bottom | Oberon | Titania

Puck Bottom | Bottom | Oberon | Oberon
Bottom || Titania | Oberon Puck Puck

RS H Oberon | Titania Puck ‘ Bottom
Oberon Puck Puck Oberon | Oberon
Titania || Titania | Titania | Titania | Titania

Puck Titania | Bottom | Oberon Puck
Bottom || Bottom Puck Titania Puck

<A H Oberon ‘ Titania ‘ Puck ‘ Bottom

Oberon Yes No Yes Yes
Titania No No Yes No

Puck Yes Yes Yes Yes
Bottom No No Yes No

Table 1.1: A Midsummer Night’s Structure

Example 1.6.2. The structure 91 that we have just introduced is called the
standard £ yp-structure. To emphasize that there are other perfectly good
L y7-structures, let us construct a different £yp-structure 2 with exactly
four elements. The elements of A will be Oberon, Titania, Puck, and
Bottom. The constant 0% will be Bottom. Now we have to construct the
functions and relations for our structure. As everything is unary or binary,
setting forth tables (as in Table seems a reasonable way to proceed. So
you can see that in this structure 2 that Titania + Puck = Oberon, while
Puck 4 Titania = Titania. You can also see that 0 (also known as Bottom)
is not the additive identity in this structure, and that < is a very strange
ordering.

Now the particular functions and relation that we chose were just the
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functions and relations that jumped into Chris’s fingers as he typed up this
example, but any such functions would have worked perfectly well to define
an Lyp-structure. It may well be worth your while to figure out if this £ -
sentence is true (whatever that means) in 2(: $50+550 < SSSSS0E0+.S0.

Example 1.6.3. We work in a language with one constant symbol, £,
and one unary function symbol, X. So, to define a model 2, all we need
to do is specify a universe, an element of the universe, and a function
X®. Suppose that we let the universe be the collection of all finite strings
of 0 or more capital letters from the Roman alphabet. So A includes such
strings as: BABY, LOGICISBETTERTHANSIX, ¢ (the empty string), and
DLKFDFAHADS. The constant symbol £ will be interpreted as the string
POTITION, and the function X® is the function that adds an X to the
beginning of a string. So X®*(YLOPHONE) = XYLOPHONE. Convince
yourself that this is a valid, if somewhat odd, L-structure.

To try to be clear about things, notice that we have X, the function
symbol, which is an element of the language £. Then there is X, the string
of exactly one capital letter of the Roman alphabet, which is one of the
elements of the universe. (Did you notice the change in typeface without
our pointing it out? You may have a future in publishing!)

Let us look at one of the terms of the language: X £. In our particular
L-structure 2 we will interpret this as

X2(£%) = X*(POTITION) = XPOTITION.

In a different structure, 98, it is entirely possible that the interpreta-
tion of the term X £ will be HUNNY or AARDVARK or 37/17. Without
knowing the structure, without knowing how to interpret the symbols of
the language, we cannot begin to know what object is referred to by a term.

Chaff: All of this stuff about interpreting terms in a struc-
ture will be made formal in the next section, so don’t panic if
it doesn’t all make sense right now.

What makes this example confusing, as well as important, is that the
function symbol is part of the structure for the language and (modulo a
superscript and a change in typeface) the function acts on the elements of
the structure in the same way that the function symbol is used in creating
L-formulas.

Example 1.6.4. Now, let £ be {0, f, g, R}, where 0 is a constant symbol, f
is a unary function symbol, g is a binary function symbol, and R is a 3-ary
relation symbol. We define an L-structure 95 as follows: B, the universe,
is the set of all variable-free £-terms. The constant 0% is the term 0. The
functions f® and ¢ are defined as in Example [1.6.3] so if ¢t and s are
elements of B (i.e., variable-free terms), then f%(t) is ft and g®(t,s) is
gts.
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Let us look at this in a little more detail. Consider 0, the constant
symbol, which is an element of £. Since 0 is a constant symbol, it is a
term, so 0 is an element of B, the universe of our structure B. (Alas, there
is no change in typeface to help us out this time.) If we want to see what
element of the universe is referred to by the constant symbol 0, we see that
0% =0, so the term 0 refers to the element of the universe 0.

If we look at another term of the language, say, f0, and we try to find
the element of the universe that is denoted by this term, we find that it is

fB(0%) = £2(0) = fo.

So the term f0 denotes an element of the universe, and that element of the
universe is ... f0. This is pretty confusing, but all that is going on is that
the elements of the universe are the syntactic objects of the language.

This sort of structure is called a Henkin structure, after Leon Henkin,
who introduced them in his PhD dissertation in 1949. These structures will
be crucial in our proof of the Completeness Theorem in Chapter 3. The
proof of that theorem will involve the construction of a particular math-
ematical structure, and the structure that we will build will be a Henkin
structure.

To finish building our structure 9B, we have to define a relation R™.
As R is a 3-ary relation symbol, R® is a subset of B3. We will arbitrarily
define

R® = {(r,s,t) € B® | the number of function symbols in 7 is even}.

This finishes defining the structure 8. The definition of R® given is
entirely arbitrary. We invite you to come up with a more interesting or
more humorous definition on your own.

1.6.1 Exercises

1. Consider the structure constructed in Example [I.6.2] Find the value of
each of the following: 0+ 0, 0E0, SO -5S0. Do you think 0 < 0 in this
structure?

2. Suppose that £ is the language {0,+, <}. Let’s work together to de-
scribe an L-structure 2. Let the universe A be the set consisting of all
of the natural numbers together with Ingrid Bergman and Humphrey
Bogart. You decide on the interpretations of the symbols. What is the
value of 5 4 Ingrid? Is Bogie < 07 (Suggested solution on page )

3. Here is a language consisting of one constant symbol, one 3-ary function
symbol, and one binary relation symbol: £ is {b,,}. Describe an £-
model that has as its universe R, the set of real numbers. Describe
another £-model that has a finite universe.
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4. Write a short paragraph explaining the difference between a language
and a structure for a language.

5. Suppose that 2 and B are two L-structures. We will say that A
and B are isomorphic and write A = B if there is a bijection
i : A — B such that for each constant symbol ¢ of L, i(c?) =
¢®, for each n-ary function symbol f and for each a,...,a, € A,
i(f*(ay,...,a,)) = fE(i(ar),...,i(a,)), and for each n-ary relation
symbol Rin L, (a1, ...,a,) € R¥ if and only if (i(a1),...,i(a,)) € R®.
The function ¢ is called an isomorphism.

(a) Show that 2 is an equivalence relation. [Suggestion: This means
that you must show that the relation & is reflexive, symmetric, and
transitive. To show that 2 is reflexive, you must show that for any
structure 2, 2 = 2, which means that you must find an isomor-
phism, a function, mapping A to A that satisfies the conditions
above. So the first line of your proof should be, “Consider this
function, with domain A and codomain A: i(x) = something bril-
liant.” Then show that your function ¢ is an isomorphism. Then
show, if A = B, then B = A. Then tackle transitivity. In each
case, you must define a particular function and show that your
function is an isomorphism.]

(b) Find a new structure that is isomorphic to the structure given in
Example Prove that the structures are isomorphic.

(c) Find two different structures for a particular language and prove
that they are not isomorphic.

(d) Find two different structures for a particular language such that
the structures have the same number of elements in their universes
but they are still not isomorphic. Prove they are not isomorphic.

6. Take the language of Example and let C' be the set of all £-terms.
Create an L-structure € by using this universe in such a way that the
interpretation of a term t is not equal to t.

7. If we take the language L1, we can create a Henkin structure for that
language in the same way as in Example [[.6.4] Do so. Consider the
Lyp-formula S0 + S0 = SS0. Is this formula “true” (whatever that
means) in your structure? Justify your answer.

1.7 Truth in a Structure

It is at last time to tie together the syntax and the semantics. We have
some formal rules about what constitutes a language, and we can identify
the terms, formulas, and sentences of a language. We can also identify
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L-structures for a given language L. In this section we will decide what it
means to say that an L-formula ¢ is true in an L-structure 2.

To begin the process of tying together the symbols with the structures,
we will introduce assignment functions. These assignment functions will
formalize what it means to interpret a term or a formula in a structure.

Definition 1.7.1. If 1 is an L-structure, a variable assignment func-
tion into 2 is a function s that assigns to each variable an element of the
universe A. So a variable assignment function into 2 is any function with
domain Vars and codomain A.

Variable assignment functions need not be injective or bijective. For
example, if we work with Ly7 and the standard structure 91, then the
function s defined by s(v;) = i is a variable assignment function, as is the
function s’ defined by

s'(v;) = the smallest prime number that does not divide i.

We will have occasion to want to fix the value of the assignment function
s for certain variables.

Definition 1.7.2. If s is a variable assignment function into 2 and x is a
variable and a € A, then s[z|a] is the variable assignment function into 2
defined as follows:

slzlal(v) =

s(v) if v is a variable other than x
a if v is the variable x.

We call the function s[z|a] an z-modification of the assignment
function s.

So an z-modification of s is just like s, except that the variable z is
assigned to a particular element of the universe.

What we will do next is extend a variable assignment function s to a
term assignment function, 5. This function will assign an element of the
universe to each term of the language L.

Definition 1.7.3. Suppose that 2 is an L-structure and s is a variable
assignment function into 2. The function 3, called the term assignment
function generated by s, is the function with domain consisting of the
set of L-terms and codomain A defined recursively as follows:

1. If ¢ is a variable, 5(t) = s(t).

2. If t is a constant symbol ¢, then 3(t) = c*.

3. If t := ftito ... t,, then 3(t) = f2(3(t1),5(t2), ..., 3(tn)).
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Although we will be primarily interested in truth of sentences, we will
first describe truth (or satisfaction) for arbitrary formulas, relative to an
assignment function.

Definition 1.7.4. Suppose that 2 is an L-structure, ¢ is an L-formula,
and s : Vars — A is an assignment function. We will say that 2 satisfies
¢ with assignment s, and write 2| = ¢[s], in the following circumstances:

1. If ¢ := = t1t9 and $(t1) is the same element of the universe A as 3(t2),
or

2. If ¢ := Rtyty ... t, and (5(t1),3(t2),...,5(t,)) € R*, or

3. If ¢ := (—a) and A B~ afs], (where F= means “does not satisfy”) or
4. If ¢ :== (a VvV B) and 2A = afs], or A = B[s] (or both), or

5. If ¢ := (Vx)(a) and, for each element a of A, A = afs(z|a)].

If I is a set of L-formulas, we say that 2 satisfies I' with assignment s,
and write 2 |=T'[s] if for each v € T', A |= 7[s].

Chaff: Notice that the symbol [= is not part of the language
L. Rather, = is a metalinguistic symbol that we use to talk
about formulas in the language and structures for the language.

Chaff: Also notice that we have at last tied together the
syntax and the semantics of our language! The definition above
is the place where we formally put the meanings on the symbols
that we will use, so that V means “or” and V means “for all.”

Example 1.7.5. Let us work with the empty language, so £ has no con-
stant symbols, no function symbols, and no relation symbols. So an L-
structure is simply a nonempty set, and let us consider the L-structure 2,
where A = {Humphrey, Ingrid}. Consider the formula z = y and the as-
signment function s, where s(x) is Humphrey and s(y) is also Humphrey.
If we ask whether 2 = = y[s], we have to check whether 5(x) is the same
element of A as S(y). Since the two objects are identical, the formula is
true.

To emphasize this, the formula x = y can be true in some universes with
some assignment functions. Although the variables x and y are distinct, the
truth or falsity of the formula depends not on the variables (which are not
equal) but rather, on which elements of the structure the variables denote,
the wvalues of the variables (which are equal for this example). Of course,
there are other assignment functions and other structures that make our
formula false. We are sure you can think of some.
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To talk about the truth or falsity of a sentence in a structure, we will
take our definition of satisfaction relative to an assignment function and
prove that for sentences, the choice of the assignment function is inconse-
quential. Then we will say that a sentence o is true in a structure 2 if and
only if A |= o[s] for any (and therefore all) variable assignment functions s.

Chaff: The next couple of proofs are proofs by induction on
the complexity of terms or formulas. You may want to reread
the proof of Theorem [I.4.2] on page [16]if you find these difficult.

Lemma 1.7.6. Suppose that s and s are variable assignment functions
into a structure 2 such that s1(v) = sa(v) for every variable v in the term
t. Then s1(t) = 532(t).

Proof. We use induction on the complexity of the term ¢. If ¢ is either a
variable or a constant symbol, the result is immediate. If t := ft1ts...1,,
then as 57(¢;) = $2(t;) for 1 < 4 < n by the inductive hypothesis, the
definition of 57(¢) and the definition of 53(¢) are identical, and thus s7(t) =
53(1). O

Proposition 1.7.7. Suppose that s1 and se are variable assignment func-
tions into a structure A such that s1(v) = s2(v) for every free variable v in
the formula ¢. Then 2 = ¢[s1] if and only if A = P[sa].

Proof. We use induction on the complexity of ¢. If ¢ := = tit9, then
the free variables of ¢ are exactly the variables that occur in ¢. Thus
Lemmatells us that $7(¢t1) = 52(t1) and $7(¢2) = 53(t2), meaning that
they are the same element of the universe A, so A = (= tit2)[s1] if and
only if 2 |= (= t1t2)[s2], as needed.

The other base case, if ¢ := Rtits...1,, is similar and is left as part of
Exercise

To begin the first inductive clause, if ¢ := -, notice that the free
variables of ¢ are exactly the free variables of «, so s; and so agree on the
free variables of a. By the inductive hypothesis, % |= «a[s1] if and only if
2A = «fsz], and thus (by the definition of satisfaction), 2 = ¢[s;] if and
only if 2 | ¢[s2]. The second inductive clause, if ¢ := a V 3, is another
part of Exercise [f]

If ¢ := (Vx)(«), we first note that the only variable that might be free in
« that is not free in ¢ is . Thus, if a € A, the assignment functions s [z|a]
and ss[x|a] agree on all of the free variables of a. Therefore, by inductive
hypothesis, for each a € A, A |= afs;[z]a]] if and only if A = a[sa[z|a]]. So,
by Definition A E ¢[s1] if and only if 2 = @[sz]. This finishes the
last inductive clause, and our proof. O

Corollary 1.7.8. If o is a sentence in the language L and A is an L-
structure, either 2 = o[s] for all assignment functions s, or A |= o[s] for
no assignment function s.
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Proof. There are no free variables in o, so if s; and sy are two assignment
functions, they agree on all of the free variables of o, there just aren’t
all that many of them. So by Proposition 2 |= o[s1] if and only if
A |= o[s2], as needed. O

Definition 1.7.9. If ¢ is a formula in the language £ and 2 is an L-
structure, we say that 2 is a model of ¢, and write 2 = ¢, if and only if
A = ¢[s] for every assignment function s. If @ is a set of L-formulas, we
will say that 2 models ®, and write 2 = @, if and only if 2 | ¢ for each
¢ e .

Notice that if o is a sentence, then 2 = o if and only if 2 = oJs] for
any assignment function s. In this case we will say that the sentence o is
true in 2.

Example 1.7.10. Let’s work in Ly, and let
N = (N,O,S,+,',E,<)

be the standard structure. Let s be the variable assignment function that
assigns v; to the number 2i. Now let the formula ¢(v1) be v1 +v; = S5550.
To show that ¢ = ¢[s], notice that

S(vy +v1) s 47 (E(vl),E(vl))
s +%(2,2)
is 4
while

5(55550) is  S™H(ST(ST(S™H(0™M))))
is 4.

Now, in the same setting, consider o, the sentence
(Vvl)—\(va)ﬂ(vl = Vg —+ ’UQ)7

which states that everything is even. [That is hard to see unless you know
to look for that —(Vvy)— and to read it as (Jvg). See the last couple of para-
graphs of this section.] You know that o is false in the standard structure,
but to show how the formal argument goes, let s be any variable assignment
function and notice that

NEo[s] iff Forevery a € N, M E —(Vua)-(vy = va + v2)s[v1]d]
iff For every a € N, M B~ (Vug)—(v1 = ve + v2)s[v1]a]
iff  For every a € N, thereis a b € N,
N = vy = v2 + vaslvi|a)[va|b].
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Now, if we consider the case when a is the number 3, it is perfectly clear that
there is no such b, so we have shown 9 [~ o[s]. Then, by Definition [.7.9}
we see that the sentence o is false in the standard structure. As you well
knew.

When you were introduced to symbolic logic, you were probably told
that there were five connectives. In the mathematics that you have learned
recently, you have been using two quantifiers. We hope you have noticed
that we have not used all of those symbols in this book, but it is now time
to make those symbols available. Rather than adding the symbols to our
language, however, we will introduce them as abbreviations. This will help
us to keep our proofs slightly less complex (as our inductive proofs will have
fewer cases) but will still allow us to use the more familiar symbols, at least
as shorthand.

Thus, let us agree to use the following abbreviations in constructing
L-formulas: We will write (a A §) instead of (=((—a) V (=83))), (a — B)
instead of ((—a) Vv B), and (a «» B) instead of ((v = B)A (8 — «)). We will
also introduce our missing existential quantifier as an abbreviation, writing
(3z)(«) instead of (—=(Vx)(—«)). It is an easy exercise to check that the
introduced connectives A, —, and <+ behave as you would expect them to.
Thus A = (a A B)[s] if and only if both 2 = «fs] and A = S[s]. The
existential quantifier is only slightly more difficult. See Exercise [7}

1.7.1 Exercises

1. We suggested after Definition [I.5.3] that the truth or falsity of the sen-
tences 1 + 1 = 2 and (Vz)(z + 1 = z) might not be automatic. Find
a structure for the language discussed there that makes the sentence
14+ 1 = 2 true. Find another structure where 1 +1 = 2 is false.
Prove your assertions. Then show that you can find a structure where
(Vx)(x + 1 = z) is true, and another structure where it is false.

2. Let the language £ be {5, <}, where S is a unary function symbol and
< is a binary relation symbol. Let ¢ be the formula (Vz)(Jy)(Sz < y).

(a) Find an L-structure 2 such that A = ¢.

(b) Find an L-structure B such that B |= (=¢).

(¢) Prove that your answer to part (a) or part (b) is correct.

(d) Write an L-sentence that is true in a structure 2 if and only if the
universe A of 2 consists of exactly two elements.

)
)
)
)

3. Consider the language and structure of Example Write two non-
trivial sentences in the language, one of which is true in the structure
and one of which (not the denial of the first) is false in the structure.
Justify your assertions.
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4. Consider the sentence o: (Vz)(Jy)[z <y — =+ 1 # y|. Find two
structures for a suitable language, one of which makes ¢ true, and the
other of which makes o false.

5. One more bit of shorthand. Assume that the language £ contains the
binary relation symbol €, which you are intending to use to mean the
elementhood relation (so p € ¢ will mean that p is an element of q).
Often, it is the case that you want to claim that ¢(x) is true for every
element of a set b. Of course, to do this you could write

(V) [(z €b)— gb(;z:)]

We will abbreviate this formula as
(Vz € b)(d()).

Similarly, (3z € b)(¢(z)) will be an abbreviation for the formula (3z) [(z €
b) A ¢(x)]. Notice that this formula has a conjunction where the pre-
vious formula had an implication! We do that just to see if you are
paying attention. (Well, if you think about what the abbreviations are
supposed to mean, you'll see that the change is necessary. We’ll have
to do something else just to see if you're paying attention.)

Now suppose that 2( is a structure for the language of set theory. So £
has only this one binary relation symbol, €, which is interpreted as the
elementhood relation. Suppose, in addition, that

A = {u,v,w,{u},{u, v}, {u,v,w}}.

In particular, notice that there is no element x of A such that z € z.
Consider the sentence

(Vy € y)(Fz € z)(z = y).
Is this sentence true or false in 2A?
6. Fill in the details to complete the proof of Proposition [1.7.7]

7. Show that A = (3z)(«)[s] if and only if there is an element a € A such
that A = «ofs[z|a]].

1.8 Substitutions and Substitutability

Suppose you knew that the sentence Vx¢(x) was true in a particular struc-
ture . Then, if ¢ is a constant symbol in the language, you would certainly
expect ¢(c) to be true in 2 as well. What we have done is substitute the
constant symbol ¢ for the variable x. This seems perfectly reasonable, al-
though there are times when you do have to be careful.
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Suppose that 2 = Va3y—(z = y). This sentence is, in fact, true in any
structure 2 such that A has at least two elements. If we then proceed to
replace the variable x by the variable u, we get the statement Jy—(u = y),
which will still be true in 2, no matter what value we give to the variable u.
If, however, we take our original formula and replace x by y, then we find
ourselves looking at Jy—(y = y), which will be false in any structure. So by
a poor choice of substituting variable, we have changed the truth value of
our formula. The rules of substitutability that we will discuss in this section
are designed to help us avoid this problem, the problem of attempting to
substitute a term inside a quantifier that binds a variable involved in the
term.

We begin by defining exactly what we mean when we substitute a term
t for a variable z in either a term u or a formula ¢.

Definition 1.8.1. Suppose that u is a term, x is a variable, and ¢ is a
term. We define the term uf (read “u with z replaced by ¢”) as follows:

1. If u is a variable not equal to x, then uf is u.
2. If u is x, then uf is t.
3. If u is a constant symbol, then uf is u.

4. If u := fujus...up, where f is an n-ary function symbol and the wu;
are terms, then

i is fur)i (ug) - (un)i-

Chaff: In the fourth clause of the definition above and in the
first two clauses of the next definition, the parentheses are not
really there. However, we believe that no one can look at w7
and figure out what it is supposed to mean. So the parentheses
have been added in the interest of readability.

For example, if we let ¢ be g(c) and we let u be f(x,y) + h(z,z,g(x)),
then uf is

f(g(c),y) + h(z,g(c), g(g(c))).

The definition of substitution into a formula is also by recursion:

Definition 1.8.2. Suppose that ¢ is an L-formula, ¢ is a term, and z is
a variable. We define the formula ¢7 (read “¢ with x replaced by ¢”) as
follows:

1. If ¢ := = uqug, then ¢ is = (u1)7 (u2)f.
2. If ¢ := Rujus ... up, then ¢f is R(up)¥(u2)f ... (un)?.
3. If ¢ := —(«), then ¢7 is —(af).
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4. If ¢ := (a V B), then ¢7 is (af V B7).
5. If ¢ := (Vy)(a), then

o = 1) ifxisy
P (Wy)(aF)  otherwise.

As an example, suppose that ¢ is the formula

P(z,y) = [(v2)(Q(g(x), 2)) V (V) (R(, h(z))].

Then, if ¢ is the term g(c), we get
7 is P(g(c),y) = [(Va)(Q(g(2), 2)) V (vy)(R(g(c), h(g()))]-

Having defined what we mean when we substitute a term for a variable,
we will now define what it means for a term to be substitutable for a variable
in a formula. The idea is that if ¢ is substitutable for x in ¢, we will not
run into the problems discussed at the beginning of this section—we will
not substitute a term in such a way that a variable contained in that term
is inadvertently bound by a quantifier.

Definition 1.8.3. Suppose that ¢ is an L-formula, t is a term, and x is a
variable. We say that ¢ is substitutable for z in ¢ if

1. ¢ is atomic, or

2. ¢ :=—(a) and t is substitutable for z in «, or

3. ¢ := (aV B) and t is substitutable for z in both « and 3, or
4. ¢ := (Vy)(a) and either

(a) « is not free in ¢, or

(b) y does not occur in ¢ and ¢ is substitutable for x in a.

Notice that ¢7 is defined whether or not ¢ is substitutable for z in
¢. Usually, we will not want to do a substitution unless we check for
substitutability, but we have the ability to substitute whether or not it is
a good idea. In the next chapter, however, you will often see that certain
operations are allowed only if ¢ is substitutable for x in ¢. That restriction
is there for good reason, as we will be concerned with preserving the truth
of formulas after performing substitutions.
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1.8.1 Exercises

1. For each of the following, write out u}:

U =cosz, tissiny.
(b) u:=y, tis Sy.
(c) u:=t(x,y,2), tis 423 — w.
2. For each of the following, first write out ¢7, then decide if ¢ is substi-

tutable for x in ¢, and then (if you haven’t already) use the definition
of substitutability to justify your conclusions.

(a) ¢ :=Va(z =y — Sz = Sy), tis SO.
(b) ¢ :=Vy(z =y — Sz = Sy), t is Sy.
(c) p:=x=y— (Vx)(Sx = Sy), t is Sy.
Show that if ¢ is variable-free, then ¢ is always substitutable for z in ¢.

Show that « is always substitutable for x in ¢.

Prove that if  is not free in v, then ¥f is .

A A

You might think that (qbg)z is ¢, but a moment’s thought will give you
an example to show that this doesn’t always work. (What if y is free in
¢?) Find an example that shows that even if y is not free in ¢, we can
still have ((b;j)i different from ¢. Under what conditions do we know
that (¢7)” is ¢7

7. Write a computer program (in your favorite language, or in pseudo-
code) that accepts as input a formula ¢, a variable z, and a term ¢ and
outputs “yes” or “no” depending on whether or not ¢ is substitutable
for x in ¢.

1.9 Logical Implication

At first glance it seems that a large portion of mathematics can be broken
down into answering questions of the form: If I know this statement is true,
is it necessarily the case that this other statement is true? In this section
we will formalize that question.

Definition 1.9.1. Suppose that A and T" are sets of L-formulas. We will
say that A logically implies I' and write A = T if for every L-structure
A, if A=A, then A =T
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This definition is a little bit tricky. It says that if A is true in 2, then
T" is true in 2. Remember, for A to be true in 2, it must be the case that
A = Afs] for every assignment function s. See Exercise

If T' = {v} is a set consisting of a single formula, we will write A = v
rather than the official A = {v}.

Definition 1.9.2. An L-formula ¢ is said to be valid if § = ¢, in other
words, if ¢ is true in every L-structure with every assignment function s.
In this case, we will write = ¢.

Chaff: It doesn’t seem like it would be easy to check whether
A ET. To do so directly would mean that we would have to ex-
amine every possible L-structure and every possible assignment
function s, of which there will be many.

I'm also sure that you’ve noticed that this double turnstyle
symbol, |, is getting a lot of use. Just remember that if there
is a structure on the left, [ = o, we are discussing truth in a
single structure. If there is a set of sentences on the left, T' = o,
then we are discussing logical implication.

Example 1.9.3. Let £ be the language consisting of a single binary relation
symbol, P, and let o be the sentence (IyVeP(x,y)) — (VzIyP(z,y)). We
show that o is valid.

So let /A be any L-structure and let s : Vars — A be any assignment
function. We must show that

& |(ByvVaP(z,y)) — (YaIyP(x,y))|[s]-

Assume that 2 = (JyVeP(z,y)) [s]. (If A does not model this sentence,
then we know by the definition of — that A = o[s].)

Since we know that 2 = (3yVzP(z,y))[s], we know that there is an
element of the universe, a, such that 2 = VzP(z,y)[s[y|a]]. And so, again
by the definition of satisfaction, we know that if b is any element of A,
A = P(x,y) [(s[y|a]) [x|b]]. If we chase through the definition of satisfaction
(Definition and of the various assignment functions, this means that
for our one fixed a, the ordered pair (b,a) € P for any choice of b € A, .

We have to prove that A = (VadyP(x,y))[s]. As the statement of
interest is universal, we must show that, if ¢ is an arbitrary element of A,
A = JyP(x,y)[s[z|c]], which means that we must produce an element of the
universe, d, such that 2 = P(z,y) [(s[z|c]) [y|d]]. Again, from the definition
of satisfaction this means that we must find a d € A such that (c,d) € P*.
Fortunately, we have such a d in hand, namely a. As we know (c,a) € P*,
we have shown 2 |= (Va3yP(x,y)) [s], and we are finished.
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1.9.1 Exercises

1. Show that {a,a« — B} |= 8 for any formulas « and . Translate this
result into everyday English. Or Norwegian, if you prefer.

2. Show that the formula x = z is valid. Show that the formula x = y is
not valid. What can you prove about the formula —x = y in terms of
validity?

3. Suppose that ¢ is an L-formula and x is a variable. Prove that ¢ is
valid if and only if (Vz)(¢) is valid. Thus, if ¢ has free variables z, y,
and z, ¢ will be valid if and only if VaVyVz¢ is valid. The sentence
VxVyVz¢ is called the universal closure of ¢.

4. (a) Assume that = (¢ — ). Show that ¢ = .

(b) Suppose that ¢ is © < y and ¢ is z < w. Show that ¢ E ¢
but & (¢ — 9). (The slash through = means “does not logically
imply.”)

[This exercise shows that the two possible ways to define logical equiv-
alence are not equivalent. The strong form of the definitions says that
¢ and 1 are logically equivalent if = (¢ — v¥) and | (¢ — ¢). The
weak form of the definition states that ¢ and 1 are logically equivalent

if ¢ |- ¢ and ¥ |- ]

1.10 Summing Up, Looking Ahead

What we have tried to do in this first chapter is to introduce the concepts
of formal languages and formal structures. We hope that you will agree
that you have seen many mathematical structures in the past, even though
you may not have called them structures at the time. By formalizing what
we mean when we say that a formula is true in a structure, we will be able
to tie together truth and provability in the next couple of chapters.

You might be at a point where you are about to throw your hands
up in disgust and say, “Why does any of this matter? I've been doing
mathematics for over ten years without worrying about structures or as-
signment functions, and I have been able to solve problems and succeed as
a mathematician so far.” Allow us to assure you that the effort and the
almost unreasonable precision that we are imposing on our exposition will
have a payoff in later chapters. The major theorems that we wish to prove
are theorems about the existence or nonexistence of certain objects. To
prove that you cannot express a certain idea in a certain language, we have
to know, with an amazing amount of exactitude, what a language is and
what structures are. Our goals are some theorems that are easy to state
incorrectly, so by being precise about what we are saying, we will be able
to make (and prove) claims that are truly revolutionary.
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Since we will be talking about the existence and nonexistence of proofs,
we now must turn our attention to defining (yes, precisely) what sorts of
things qualify as proofs. That is the topic of the next chapter.






Chapter 2

Deductions

2.1 Naively

What is it that makes mathematics different from other academic subjects?
What is it that distinguishes a mathematician from a poet, a linguist, a
biologist, or a civil engineer? We are sure that you have many answers to
that question, not all of which are complimentary to the authors of this
work or to the mathematics instructors that you have known!

We would like to suggest that one of the things that sets mathematics
apart is the insistence upon proof. Mathematical statements are not ac-
cepted as true until they have been verified, and verified in a very particular
manner. This process of verification is central to the subject and serves to
define our field of study in the minds of many. Allow us to quote a famous
story from John Aubrey’s Brief Lives:

[Thomas Hobbes| was 40 years old before he looked on Ge-
ometry; which happened accidentally. Being in a Gentleman’s
Library, Euclid’s Elements lay open and ’twas the 47 El. libri 1
[the Pythagorean Theorem|. He read the Proposition. By G—,
sayd he (he would now and then sweare an emphaticall Oath
by way of emphasis) this is impossible! So he reads the Demon-
stration of it, which referred him back to such a Proposition;
which proposition he read. That referred him back to another,
which he also read. Et sic deinceps [and so on] that at last he
was demonstratively convinced of that trueth. This made him
in love with Geometry.

Doesn’t this match pretty well with your image of a mathematical proof?
To prove a proposition, you start from some first principles, derive some
results from those axioms, then, using those axioms and results, push on
to prove other results. This is a technique that you have seen in geometry
courses, college mathematics courses, and in the first chapter of this book.

41
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Our goal in this chapter will be to define, precisely, something called a
deduction. You probably haven’t seen a deduction before, and you aren’t
going to see very many of them after this chapter is over, but our idea
will be that any mathematical proof should be able to be translated into a
(probably very long) deduction. This will be crucial in our interpretation
of the results of Chapters 3 and 5, where we will discuss the existence and
nonexistence of certain deductions, and interpret those results as making
claims about the existence and nonexistence of mathematical proofs.

If you think about what a proof is, you probably will come up with a
characterization along the lines of: A proof is a sequence of statements, each
one of which can be justified by referring to previous statements. This is a
perfectly reasonable starting point, and it brings us to the main difficulty
we will have to address as we move from an informal understanding of what
constitutes a proof to a formal definition of a deduction: What do you mean
by the word justified?

Our answer to this question will come in three parts. We will start
by specifying a set A of L-formulas, which will be called the logical ax-
ioms. Logical axioms will be deemed to be “justified” in any deduction.
Depending on the situation at hand, we will then specify a set of nonlogical
axioms, Y. Finally, we will develop some rules of inference, which will be
ordered pairs (T, ¢), where I is a finite set of formulas and ¢ is a formula.
Then, if « is a formula, we will say that a deduction of o from X is a finite
list of formulas ¢1, ¢2, ..., ¢, such that ¢, is a and for each i, ¢; is justi-
fied by virtue of being either a logical axiom (¢; € A), a nonlogical axiom
(¢; € X), or the conclusion of one of our rules of inference, (T, ¢;), where
L C{p1,2,...,0i1}.

The proofs that you have seen in your mathematical career have had a
couple of nice properties. The first of these is that proofs are easy to follow.
(OK, they aren’t always easy to follow, but they are supposed to be.) This
doesn’t mean that it is easy to discover a proof, but rather that if someone
is showing you a proof, it should be easy to follow the steps of the proof and
to understand why the proof is correct. The second admirable property of
proofs is that when you prove something, you know that it is true! Our
definition of deduction will be designed to make sure that deductions, too,
will be easily checkable and will preserve truth.

In order to do this, we will impose the following restrictions on our
logical axioms and rules of inference:

1. There will be an algorithm (i.e., a mechanical procedure) that will
decide, given a formula 6, whether or not 6 is a logical axiom.

2. There will be an algorithm that will decide, given a finite set of for-
mulas T" and a formula 6, whether or not (I', ) is a rule of inference.

3. For each rule of inference (T, 8), T will be a finite set of formulas.

4. Each logical axiom will be valid.
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5. Our rules of inference will preserve truth. In other words, for each
rule of inference (T',6), T = 6.

The idea here is that although it may require no end of brilliance and
insight to discover a deduction of a formula «, there should be no brilliance
and no insight required to check whether an alleged deduction of « is, in
fact, a deduction of a. To check whether a deduction is correct will be
such a simple procedure that it could be programmed into a computer.
Furthermore, we will be certain that if a deduction of « from X is given,
and if we look at a mathematical structure 2 such that 2 = 3, then we
will be certain that 2 = «. This is what we mean when we say that our
deductions will preserve truth.

2.2 Deductions

We begin by fixing a language £. Also assume that we have been given
a fixed set of L-formulas, A, called the set of logical axioms, and a set of
ordered pairs (T', ¢), called the rules of inference. (We will specify which
formulas are elements of A and which ordered pairs are rules of inference
in the next two sections.) A deduction is going to be a finite sequence, or
ordered list, of L-formulas with certain properties.

Definition 2.2.1. Suppose that X is a collection of L-formulas and D is
a finite sequence (¢1, s, ..., ¢,) of L-formulas. We will say that D is a
deduction from X if for each 7, 1 < i < n, either

1. ¢; € A (¢; is a logical axiom), or
2. ¢; € ¥ (¢; is a nonlogical axiom), or
3. There is a rule of inference (T, ¢;) such that I' C {¢1, d2, ..., i1}

If there is a deduction from X, the last line of which is the formula ¢,
we will call this a deduction from ¥ of ¢, and write ¥ F ¢.

Chaff: Well, we have now established what we mean by the
word justified. In a deduction we are allowed to write down
any L-formula that we like, as long as that formula is either a
logical axiom or is listed explicitly in a collection ¥ of nonlogical
axioms. Any formula that we write in a deduction that is not
an axiom must arise from previous formulas in the deduction
via a rule of inference.

You may have gathered that there are many different deduc-
tive systems, depending on the choices that are made for A, and
the rules of inference. As a general rule, a deductive system will
either have lots of rules of inference and few logical axioms, or
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not too many rules and a lot of axioms. In developing the de-
ductive system for us to use in this book, we attempt to pursue
a middle course.

Also notice that F is another metalinguistic symbol. It is
not part of the language L.

Example 2.2.2. Suppose, for starters, that we don’t want to make any
assumptions. So, let ¥ = ), let A = (), and write down a deduction from
Y. Don’t be shy. Go ahead. We'll wait.

Still nothing? Right. There are no deductions from the empty set of
axioms. (Actually, after we set up our rules of inference, there will be some
deductions from the empty set of axioms, but that comes later.) This is
a problem that the English logician Bertrand Russell found particularly
annoying as he began to learn mathematics.

At the age of eleven, I began Euclid, with my brother as my
tutor. This was one of the great events of my life, as dazzling
as first love. I had not imagined that there was anything so
delicious in the world. ...From that moment until Whitehead
and I finished Principia Mathematica, when I was thirty-eight,
mathematics was my chief interest, and my chief source of hap-
piness. Like all happiness, however, it was not unalloyed. I had
been told that Euclid proved things, and was much disappointed
that he started with axioms. At first I refused to accept them
unless my brother could offer me some reason for doing so, but
he said: “If you don’t accept them we cannot go on,” and as
I wished to go on, I reluctantly admitted them pro tem. The
doubt as to the premisses of mathematics which I felt at that
moment remained with me, and determined the course of my
subsequent work. [Russell 67, p. 36]

What we have managed to do with our definition of deduction, though,
is to be up front about our need to make assumptions, and we will acknowl-
edge our axiom set in every deduction that we write.

Example 2.2.3. Let us work in the language £ = {P}, where P is a binary



2.2. Deductions 45

relation symbol. Let X, our set of axioms, be
Y ={VaP(z,z),
P(u,v),
P(u,v) = P(v,u),
P(v,u) = P(u,u)}.

We will let A = @ for now. We also need to have a set of rules of
inference. So temporarily let our set of rules of inference be

{({a,x = B}, B) | @ and B are formulas of L}.

This is just the rule modus ponens, which says that from the formulas «
and a — 8 we may conclude 3.
Now we can write a deduction from ¥ of the formula P(u, ), as follows:

u
u

<

(u, v)
(u,v)
P(v,u)
(v,u)
(u, )

£
S

You can easily see that every formula in our deduction is either explicitly
listed among the elements of our axiom set ¥, or follows from modus ponens
from previously listed formulas in the deduction.

Notice, however, that we cannot use the universal statement Vo P(z, z)
to derive our needed formula P(u,u). Even a statement that seems like
it ought to follow from our axioms, P(v,v), for example, will not be de-
ducible from ¥ until we either add to our rules of inference or include some
additional axioms. Our definition of a deduction is very limiting—we can-
not even use standard logical tricks such as universal instantiation [from
Vablah(z) deduce blah(t)]. These logical axioms will be gathered together
in Section 2.3

Chaff: It is really tempting here to write down the incorrect
deduction

VaP(z,x)
P(u,u).

Please don’t say things like that until we have built our collec-
tion of logical axioms. Remember, what we are trying to do
here is to have a definition of deduction that is entirely syn-
tactic, that does not depend on the meanings of the symbols.
Where you are likely to run into trouble is when you start think-
ing too much about the meanings of the things that you write
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down. Our definition gives us deductions that are easily veri-
fiable: Given an alleged deduction from 3, as long as we can
decide what formulas are in ¥, we can decide if the alleged de-
duction is correct. In fact, we could easily program a computer
to check the deduction for us. However, this ease in verification
comes with a price: Deductions are difficult to write and hard
to motivate.

Definition is a “bottom-up” definition. It defines a deduction in
terms of its parts. Another way to define a collection of things is to take
a “top-down” approach. The next proposition does just that, by showing
that we can think of the collection of deductions from ¥ (called Thmy) as
the closure of the collection of axioms under the application of the rules of
inference.

Proposition 2.2.4. Fix sets of L-formulas % and A and a collection of
rules of inference. The set Thms, = {¢ | X b ¢} is the smallest set C' such
that

1. X CC.
2. ACC.
3. If (', 0) is a rule of inference and I C C, then 6 € C.

Proof. This proposition makes two separate claims about the set Thmsy.
The first claim is that Thmy, satisfies the three criteria. The second claim
is that Thmy is the smallest set to satisfy the criteria. We tackle these
claims one at a time.

First, let us look at the criteria in order, and make sure that Thmy,
satisfies them. So to begin, we must show that ¥ C Thmy. But certainly if
o € X, there is a deduction-from-3 of o, for example this one-line deduction:
o. Similarly, to show that A C Thmy, we notice that there is a one-line
deduction of any A € A. To finish this part of the proof, we must show
that if (T', 0) is a rule of inference and I' C Thmy, then § € Thmy. But to
produce a deduction-from-¥ of 6, all we have to do is write down deductions
of each of the «’s in I'; followed by the formula 6. This is a valid deduction,
as 0 follows from T" by the rule of inference (T',§). Thus Thmy, satisfies the
three criteria of the proposition.

Now we must show that Thmsy is the smallest such set. This is quite
easy to prove once you figure out what you have to do. What is claimed is
that if C' is a collection of formulas satisfying the given requirements, then
Thmy, C C. So we assume that C' is a class satisfying the conditions, and
we attempt to show that every element of Thmy is in C.

If ¢ € Thmy, there is a deduction from X with last line ¢. If the entry
¢ is justified by virtue of ¢ being either a logical or nonlogical axiom, then
¢ is explicitly included in the set C'. If ¢ is justified by reference to a rule
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of inference (I, ¢), then each v € T" is an element of C (this is really a proof
by induction, and here is where we use the inductive hypothesis), and thus,
by the third requirement on C, ¢ € C, as needed.

Since Thmy, C C for all such sets C, Thmsy is the smallest such set, as
claimed. O

Here is what we will do in the next few sections: We will define A,
the fixed set of logical axioms; we will establish our collection of rules of
inference; we will prove some results about deductions; and finally, we will
discuss some examples of sets of nonlogical axioms.

2.2.1 Exercises
1. Let the collection of nonlogical axioms be
Y ={(A(z) A A(z)) — B(z,y), A(z), B(z,y) — A(z)},
and let the rule of inference be modus ponens, as in Example [2.2.3] For

each of the following, decide if it is a deduction. If it is not a deduction,
explain how you know that it is not a deduction.

(a) Az)
)

(A(z) A A(z)) — B(z,y)
B(z,y)
(b) B(x,y) — A(x)
Az)
B(z,y)
(c) (A(z) A A(z)) — B(z,y)

Bz, y) = A(z)
(A(z) A A(z)) = A(z)

2. Consider the axiom system X of Example 2.2.3] It is implied in that
example that there is no deduction from ¥ of the formula P(v,v). Prove
this fact.

3. Carefully write out the proof of Proposition worrying about the
inductive step. [Suggestion: You may want to proceed by induction on
the length of the shortest deduction of ¢.]
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4. Let £ be a language that consists of a single unary predicate symbol R,
and let B be the infinite set of axioms

B = {R(xl)a
R(Zlil) — R(ZL‘Q),
R(z2) — R(x3),

R(xl) — R(ZL'Z'Jrl),

}.

Using modus ponens as the only rule of inference, prove by induction
that B F R(z;) for each natural number j > 1.

2.3 The Logical Axioms

Let a first-order language £ be given. In this section we will gather together
a collection A of logical axioms for £. This set of axioms, though infinite,
will be decidable. Roughly this means that if we are given a formula ¢ that
is alleged to be an element of A, we will be able to decide whether ¢ € A
or ¢ ¢ A. Furthermore, we could, in principle, design a computer program
that would be able to decide membership in A in a finite amount of time.
After we have established the set of logical axioms A and we want to
start doing mathematics, we will want to add additional axioms that are
designed to allow us to deduce statements about whatever mathematical
system we may have in mind. These will constitute the collection of non-
logical axioms, X. For example, if we are working in number theory, using
the language Ly, along with the logical axioms A we will also want to
use other axioms that concern the properties of addition and the ordering
relation denoted by the symbol <. These additional axioms are the formu-
las that we will place in X. Then, from this expanded set of axioms A U X
we will attempt to write deductions of formulas that make statements of
number-theoretic interest. To reiterate: A, the set of logical axioms, will be
fixed, as will the collection of rules of inference. But the set of nonlogical
axioms must be specified for each deduction. In the current section we set
out the logical axioms only, dealing with the rules of inference in Section [2.4]
and deferring our discussion of the nonlogical axioms until Section [2.8

2.3.1 Equality Axioms

We have taken the route of assuming that the equality symbol, =, is a part
of the language L£. There are three groups of axioms that are designed for
this symbol. The first just says that any object is equal to itself:
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x = x for each variable x. (E1)
For the second group of axioms, assume that x1, xs, ..., x, are variables,
Y1,Y2,. .., Y, are variables, and f is an n-ary function symbol.

(21 =y1) A (B2 =12) A- An = yn)] —

(E2)

(f(xlax% s 73:77,) = f(ylayQa cee ,yn))

The assumptions for the third group of axioms is the same as for the

second group, except that R is assumed to be an n-ary relation symbol (R
might be the equality symbol, which is seen as a binary relation symbol).

[(z1=y1) A (@2 =y2) A Alzn = yn)] —
(R(x1,22, .- &) = R(Y1,Y2,- -, Yn))-
(E3)

Axioms (E2)) and (E3)) are axioms that are designed to allow substitution
of equals for equals. Nothing fancier than that.

2.3.2 Quantifier Axioms

The quantifier axioms are designed to allow a very reasonable sort of entry
in a deduction. Suppose that we know VaP(x). Then, if ¢ is any term of
the language, we should be able to state P(¢). To avoid problems of the
sort outlined at the beginning of Section [1.8] we will demand that the term
t be substitutable for the variable x.

(Vx@) — ¢F, if t is substitutable for = in ¢. (Q1)
of — (Jxd), if t is substitutable for z in ¢. (Q2)

In many logic texts, axiom (Q1]) would be called universal instantiation,
while (Q2) would be known as existential generalization. We will avoid this
impressive language and stick with the more mundane (Q1)) and (Q2).

2.3.3 Recap

Just to gather all of the logical axioms together in one place, let us state
them once again. The set A of logical axioms is the collection of all formulas
that fall into one of the following categories:
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x = z for each variable z. (E1)
[((E1=y) A(w2=y2) A Aan = ya)] —
(f(xlax% cee 71'71) - f(ylvaa cee ,yn))
(@1 =y1) A (2 = y2) A Azn = yn)] —
(R(Il,fﬂg, s 7xn) - R(ylay27 BRI yn) .

)
(E3)
(
(

(E2)

(Vzp) — ¢f, if t is substitutable for x in ¢.
@7 — (Jz¢), if t is substitutable for z in ¢.

Q1)
Q2)

Notice that A is decidable: We could write a computer program which,
given a formula ¢, can decide in a finite amount of time whether or not ¢
is an element of A.

2.4 Rules of Inference

Having established our set A of logical axioms, we must now fix our rules of
inference. There will be two types of rules, one dealing with propositional
consequence and one dealing with quantifiers.

2.4.1 Propositional Consequence

In all likelihood you are familiar with tautologies of propositional logic.
They are simply formulas like (A — B) + (=B — —A). If you are comfort-
able with tautologies, feel free to skip over the next couple of paragraphs.
If not, what follows is a very brief review of a portion of propositional logic.

We work with a restricted language P, consisting only of a set of propo-
sitional variables A, B, C, ... and the connectives V and —. Notice there are
no quantifiers, no relation symbols, no function symbols, and no constants.
Formulas of propositional logic are defined as being the collection of all ¢
such that either ¢ is a propositional variable, or ¢ is (—«), or ¢ is (a V ),
with « and 8 being formulas of propositional logic.

Each propositional variable can be assigned one of two truth values, T
or F, corresponding to truth and falsity. Given such an assignment (which
is really a function v : propositional variables — {T, F'}), we can extend
v to a function 7 assigning a truth value to any propositional formula as
follows:

v(¢) if ¢ is a propositional variable

F if p:=(-a) and v(a) =T

F if p:=(aVp)and v(a) =7(8) =F
T otherwise.
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Now we say that a propositional formula ¢ is a tautology if and only if
T(¢) = T for any truth assignment v.

One way that you can check whether a given ¢ is a tautology is by
constructing a truth table with one row for each possible combination of
truth values for the propositional variables that occur in ¢. Then you fill in
the truth table and see whether the truth value associated with the main
connective is always true. For example, consider the propositional formula
A — (B — A), which is translated to -A V (=B V A). The truth table
verifying that this formula is a tautology is

A B|-A| V| (=B v A
T T F\T| F T T
T F|F|T| T T T
F T|T|T| F F F
F F|T |T| T T F

To discuss propositional consequence in first-order logic, we will transfer
our formulas to the realm of propositional logic and use the idea of tautology
in that area. To be specific, given 3, an L-formula of first-order logic, here
is a procedure that will convert 8 to a formula Sp of propositional logic
corresponding to 5:

1. Find all subformulas of 8 of the form Vxa that are not in the scope
of another quantifier. Replace them with propositional variables in a
systematic fashion. This means that if VyQ(y, ¢) appears twice in 3,
it is replaced by the same letter both times, and distinct subformulas
are replaced with distinct letters.

2. Find all atomic formulas that remain, and replace them systematically
with new propositional variables.

3. At this point, 8 will have been replaced with a propositional formula

Bp.
For example, suppose that we look at the £-formula
(VzP(z) A Q(c,2)) — (Q(c, z) VVzP(x)).

For the first step of the procedure above, we replace the quantified subfor-
mulas with the propositional letter B:

(BAQ(e,2)) = (Q(e,z) V B).

To finish the transformation to a propositional formula, replace the
atomic formula with a propositional letter:

(BAA) — (AVB).
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Notice that if Sp is a tautology, then 3 is valid, but the converse of this
statement fails. For example, if § is

[(¥2)(0) A (Y2) (0 — p)] = (V) (p),

then f is valid, but Sp would be [A A B] — C, which is certainly not a
tautology.

We are now almost at a point where we can state our propositional rule
of inference. Recall that a rule of inference is an ordered pair (T', ¢), where
I" is a set of L-formulas and ¢ is an £-formula.

Definition 2.4.1. Suppose that I'p is a set of propositional formulas and
¢p is a propositional formula. We will say that ¢p is a propositional
consequence of I'p if every truth assignment that makes each proposi-
tional formula in I'p true also makes ¢p true. Notice that ¢p is a tautology
if and only if ¢p is a propositional consequence of .

Lemma 2.4.2. If Tp = {v1p,Y2p,---,Ynp} 18 a nonempty finite set of
propositional formulas and ¢p is a propositional formula, then ¢p is a
propositional consequence of I'p if and only if

[(vip Av2p A Anp] = ¢p
is a tautology.

Proof. Exercise [3] O

Now we extend our definition of propositional consequence to include
formulas of first-order logic:

Definition 2.4.3. Suppose that I' is a finite set of £L-formulas and ¢ is an
L-formula. We will say that ¢ is a propositional consequence of T if
¢p is a propositional consequence of I'p, where ¢p and I'p are the results
of applying the procedure on the preceding page uniformly to ¢ and all of
the formulas in T'.

Example 2.4.4. Suppose that £ contains two unary relation symbols, P
and Q). Let I" be the set

{VoP(z) — 3yQ(y), yQ(y) — P(x),~P(z) < (y = 2)}.

If we let ¢ be the formula VzP(x) — —(y = 2), then by applying our
procedure uniformly to the elements of I' and ¢, we see that

I'pis{A— B,B— C,~C «+ D}
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and ¢p is A — —D, where the fact that we have substituted the same
propositional variables for the same formulas in ¢ and the elements of T’
is ensured by our applying the procedure uniformly to all of the formulas
in question. At this point it is easy to verify that ¢ is a propositional
consequence of I'.

Finally, our rule of inference:

Definition 2.4.5. If T is a finite set of £-formulas, ¢ is an £-formula, and
¢ is a propositional consequence of I', then (I, ¢) is a rule of inference
of type (PC).

Chaff: All of this formalism just might be hiding what is
really going on here. What rule (PC) says is that if you have
proved vy, and 7, and [(y1 Ay2) — ¢]p is a tautology, then you
may conclude ¢. Nothing fancier than that.

Also notice that if ¢ is a formula such that ¢p is a tautology,
rule (PC) allows us to assert ¢ in any deduction, using T = ().

2.4.2 Quantifier Rules

The motivation behind our quantifier rules is very simple. Suppose, without
making any particular assumptions about z, that you were able to prove
“r is an ambitious aardvark.” Then it seems reasonable to claim that you
have proved “(Vz)x is an ambitious aardvark.” Dually, if you were able
to prove the Riemann Hypothesis from the assumption that “x is a bossy
bullfrog,” then from the assumption “(3z)z is a bossy bullfrog,” you should
still be able to prove the Riemann Hypothesis.

Definition 2.4.6. Suppose that the variable z is not free in the formula
1. Then both of the following are rules of inference of type (QR):

({¢ = ¢},9 — (va9))
({¢ = v}, (Gee) = ).

The “not making any particular assumptions about ” comment is made
formal by the requirement that x not be free in .

Chaff: Just to make sure that you are not lost in the brack-
ets of the definition, what we are saying here is that if x is not
free in ¥:

1. From the formula ¢ — ¢, you may deduce ¢ — (V).
2. From the formula ¢ — 1, you may deduce (Jz¢) — 1.
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2.4.3 Exercises

1. We claim that the collection A of logical axioms is decidable. Outline an
algorithm which, given an L-formula 0, outputs “yes” if 6 is an element
of A and outputs “no” if @ is not an element of A. You do not have
to be too fussy. Notice that you have to be able to decide if a term
t is substitutable for a variable x is a formula ¢. See Exercise [7] in

Section [L8.1]

2. Show that the set of rules of inference is decidable. So outline an algo-
rithm that will decide, given a finite set of formulas I' and a formula 6,
whether or not (T, 0) is a rule of inference.

3. Prove Lemma [2.4.2

4. Write a deduction of the second quantifier axiom (Q2) (on page
without using (Q2]) as an axiom.

5. For each of the following, decide if ¢ is a propositional consequence of
I" and justify your assertion.

(a) T'is {(¥2P(x)) = Q(y), (Y2 P(2))V (V2R (z)), J~R(x)}; 6 is Q(y).
M) Tis{r=yAQY),Qy) Ve +y<z}; disx+y<z

(¢) Tis {P(z,y,x),x < yV M(w,p),(=P(x,y,x)) A (-xz < y)}; ¢ is
~M(w,p).

6. Prove that if 0 is not valid, then 6p is not a tautology. Deduce that if
fp is a tautology, then 6 is valid.

2.5 Soundness

Mathematicians are by nature a conservative bunch. We speak not of po-
litical or social leanings, but of their professional outlook. In particular, a
mathematician likes to know that when something has been proved, it is
true. In this section we will prove a theorem that shows that the logical
system that we have developed has this highly desirable property. This
result is called the Soundness Theorem.

Let us restate the list of requirements that we set out on page for
our axioms and rules of inference:

1. There will be an algorithm that will decide, given a formula 6, whether
or not 0 is a logical axiom.

2. There will be an algorithm that will decide, given a finite set of for-
mulas T’ and a formula 6, whether or not (T, 6) is a rule of inference.

3. For each rule of inference (T', §), I will be a finite set of formulas.
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4. Each logical axiom will be valid.

5. Our rules of inference will preserve truth. In other words, for each
rule of inference (T, ), T = 6.

These requirements serve two purposes: They allow us to verify mechan-
ically that an alleged deduction is in fact a deduction, and they provide the
basis of the Soundness Theorem. Of course, we must first verify that the
system of axioms and rules that we have set out in the preceding two sec-
tions satisfies these requirements.

That the first three requirements above are satisfied by our deduction
system was noted as the axioms and rules were presented. These are the
rules that are needed for deduction verification. We will discuss the last
two requirements in more detail and then use those requirements to prove
the Soundness Theorem.

Theorem 2.5.1. The logical axioms are valid.

Proof. We must check both the equality axioms and the quantifier axioms.

First, consider equality axioms of type (E2). [(E1) and (E3|) will be proved
in the Exercises.]

Chaff: Let us mention that we will use Theorem [2.6.2] in
this proof. Although the presentation of that result has been
delayed in order to aid the flow of the exposition, you may want
to look at the statement of that theorem now so you won’t be
surprised when it appears.

So fix a structure 2 and an assignment function s : Vars — A. We must
show that

ﬂ#(leﬁM@wM“W@nyM>

U@huwuwwzf@hmwnwwﬁby

As the formula in question is an implication, we may assume that the
antecedent is satisfied by the pair (2, s), and thus s(z1) = s(y1), s(z2) =
s(y2), ..., and s(x,) = s(yn). We must prove that A = (f(x1,z2,...,2,) =
f(y1,92,---,yn))[s]. From the definition of satisfaction (Definition [L.7.4)),
we know this means that we have to show

§(f($1,$2, s 7xn)) = g(f(ylvy% s ’yn))

Now we look at the definition of term assignment function (Definition|1.7.3))
and see that we must prove

FA(5(1),3(x2), . 5(x0)) = £ (5(11),5(52), -, 5(yn))-
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But since 3(x;) = s(x;) = s(y;) = 5(y;), and since f* is a function, this is
true. Thus our equality axiom (E2) is valid.

Now we examine the quantifier axiom of type (Q1), reserving (Q2) for
the Exercises. Once again, fix 2 and s, and assume that the term ¢ is
substitutable for the variable x in the formula ¢. We must show that

o [(V26) = o7][s].

So once again, we assume that 2 = (Vz¢)[s], and we show that A = ¢¥[s].
By assumption, 20 | ¢[s[z|a]] for any element a € A, so in particular,
A = olslals(t)])

Informally, this says that ¢ is true in 21 with assignment function s,
where you interpret z as 3(t). It is plausible, given our assumption that ¢ is
substitutable for z in ¢, that if we altered the formula ¢ by replacing x by ¢,
then ¢7 would be true in 2 with assignment function s. This is the content
of Theorem Since we know that 2 |= ¢[s[z[5(t)]] and Theorem [2.6.2]
states that this is equivalent to 2 = ¢7¥[s], we have established A = ¢7[s],
so we have proved that axioms of type (Q1) are valid.

Thus, modulo your proofs of (E1), (E2), and (Q2) and the delayed
proof of Theorem [2.6.2] all of our logical axioms are valid, and our proof is
complete. O

This leaves one more item on our list of requirements to check. We must
show that our rules of inference preserve truth.

Theorem 2.5.2. Suppose that (I',0) is a rule of inference. Then T' = 0.

Proof. First, assume that (T, 0) is a rule of type (PC). Then I is finite, and
by Lemma [2:4:2] we know that

[Yip AYap A+ AYnp] — Op

is a tautology, where I'p = {y1p,Y2p,---sTnpt is the set of propositional
formulas corresponding to I' and 6p is the propositional formula corre-
sponding to 6. But then, by Exercise [6] on page we know that

(i A2 A Ayy) — 0

is valid, and thus I' |= 6.

The other possibility is that our rule of inference is a quantifier rule.
So, suppose that x is not free in 1. We show that (¢ — ¢) = [ — (Vz¢)],
leaving the other (QR) rule for the Exercises.

So fix a structure 2 and assume that 2 |= (¢ — ¢). Thus our assump-
tion is that for any assignment s, A = (¢ — ¢)[s]. We must show that
A E (¢ = Va¢), which means that we must show that (¢ — V) is satis-
fied in 2 under every assignment function. So let an assignment function
t: Vars — A be given. We must show that 2 = (¢ — Va)[t]. If 2 = [t],
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we are done, so assume that 2 = ¢[t]. We want to prove that 2 = Vzo[t],
which means that if a is any element of A, we must show that 2 = ¢[t[x|a]].

We know, by assumption, that 2 = (¢ — ¢)[t[z]|a]]. Furthermore,
Proposition tells us that A = [t[z|a]], as A = ¥[t], and ¢ and t[z|a]
agree on all of the free variables of ¥ (z is not free in 1) by assumption). But
then, by the definition of satisfaction, A = ¢[t[z|a]], and we are finished. [

We are now at a point where we can prove the Soundness Theorem.
The idea behind this theorem is very simple. Suppose that ¥ is a set of
L-formulas and suppose that there is a deduction of ¢ from . What the
Soundness Theorem tells us is that in any structure 2l that makes all of the
formulas of ¥ true, ¢ is true as well.

Theorem 2.5.3 (Soundness). If X+ ¢, then ¥ = ¢.

Proof. Let Thmy, = {¢ | ¥ F ¢}, and let C = {¢ | ¥ = ¢}. We show that
Thmy, C C, which proves the theorem.
Notice that C' has the following characteristics:

1. ¥ CC. If 0 € &, then certainly ¥ = o.

2. A C C. As the logical axioms are valid, they are true in any structure.
Thus X = A for any logical axiom A, which means that if A € A, then
A € C, as needed.

3. If (T, 0) is a rule of inference and I' C C, then 6 € C. So assume that
I C C. To prove § € C we must show that ¥ = 6. Fix a structure 2
such that 2 = ¥. We must prove that 2 = 6.

If 7 is any element of T, then since v € C, we know that ¥ = ~. Since
2 = ¥ and ¥ = v, we know that 2 = ~. But this says that 2 = v
for each v € T, so 2 = T'. But Theorem tells us that I' |= 6,
since (T',0) is a rule of inference. Therefore, since A =T and I' |= 6,
2 = 6, as needed.

So C'is a set of the type outlined in Proposition 2.2.4] and by that
proposition, Thmy C C, as needed. O

Notice that the Soundness Theorem begins to tie together the notions
of deducibility and logical implication. It says, “If there is a deduction
from 3 of ¢, then X logically implies ¢.” Thus the purely syntactic notion
of deduction, a notion that relies only upon typographical considerations,
is linked to the notions of truth and logical implication, ideas that are
inextricably tied to mathematical structures and their properties. This
linkage will be tightened in Chapter

Chaff: The proof of the Soundness Theorem that we have
presented above has the desirable qualities of being neat and
quick. It emphasizes a core fact about the consequences of ¥,
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namely that Thmy; is the smallest set of formulas satisfying the
given three conditions. Unfortunately, the proof has the less
desirable attribute of being pretty abstract. FExercise [5| outlines
a more direct, less abstract proof of the Soundness Theorem.

2.5.1 Exercises

1. Ingrid walks into your office one day and announces that she is puzzled.
She has a set of axioms ¥ in the language of number theory, and she
has a formula ¢ that she has proved using the assumptions in 3. Unfor-
tunately, ¢ is a statement that is not true in the standard model 91. Is
this a problem? If it is a problem, what possible explanations can you
think of that would explain what went wrong? If it is not a problem,
why is it not a problem?

2. Prove that the equality axioms of type (E1)) and (E3)) are valid.
Show that the quantifier axiom of type (Q2) is valid.
Show that, if  is not free in ¥, (¢ — ¢) = [(3z¢p) — ¢].

ool W

Prove the Soundness Theorem by induction on the complexity of the
proof of ¢. For the base cases, ¢ is either a logical axiom or a member
of X. Then assume that ¢ is proved by reference to a rule of inference.
Show that in this case as well, ¥ = ¢.

2.6 Two Technical Lemmas

In this section we present two rather technical lemmas that we need to
complete the proof of Theorem The proofs that are involved are not
pretty, and if you are the trusting sort, you may want to scan through this
section rather quickly. On the other hand, if you come to grips with these
results, you will gain a better appreciation for the details of substitutability
and assignment functions.

To motivate the first lemma, consider this example: Suppose that we
are working in the language of number theory and that the structure under
consideration comprises the natural numbers. Let the term w be z - v and
the term ¢ be y 4+ z. Then u¥ is (y + z) - v. Now we have to fix a couple of
assignment functions. Let the assignment function s look like this:

Vars | s
2

—_

T

Y 3
z 7
v 4
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So s(x) =12, s(y) = 3, and so on.
Now, suppose that s’ is an assignment function that is just like s, except
that s’ sends x to the value 3(t), which is S(y + 2z) =3+ 7 = 10:

!

Vars| s | s
T 12 | 10
Y 313
z 7|7
v 4 | 4

Now, if you compare 5(uf) and s'(u), you find that

3(uf) =3((y+2)-v)=(B+7)-4=10-4=40

s'(u) = s'(z - v) =10 -4 = 40.
So, in this situation, the element of the universe that is assigned by s to
uf is the same as the element of the universe that is assigned by s’ to w.
In some sense, the lemma states that it does not matter whether you alter
the term or the assignment function, the result is the same.
Here is the formal statement:

Lemma 2.6.1. Suppose that u is a term, x is a variable, and t is a term.
Suppose that s : Vars — A is a variable assignment function and that
s' = s[x|s5(t)]. Then s(uf) = s'(u).

Proof. The proof is by induction on the complexity of the term w. If u is
the variable z, then
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The last inductive case is if w is f(r1,72,...,7,), with each r; a term.
In this case,

( ) ([f 7“177‘2,""“1)}?)

:§( ( r1)%, (re t,...,(rn)f))
= fAG[(r)7),5(r2)7), - - -, 3](r)F])  definition of 5
= A5 (r1), s (r2), ..., 5 (rn) inductive hypothesis
=5'(f(ri,re,...,m0)) definition of s’
= s'(u).
So for every term u, 5(uf) = s'(u). O

Chaff: That was hard. If you understood that proof the
first time through, you have done something quite out of the
ordinary. If, on the other hand, you are a mere mortal, you
might want to work through the proof again, keeping an exam-
ple in mind as you work. Pick a language, terms u and ¢ in your
language, and a variable xz. Fix a particular assignment func-
tion s. Then just follow through the steps of the proof, keeping
track of where everything goes. We would write it out for you,
but you will get more out of doing it for yourself. Go to it!

Our next technical result is the lemma that we quoted explicitly in the
proof of Theorem This theorem states that as long as ¢ is substi-
tutable for z in ¢, the two different ways of evaluating the truth of “¢,
where you interpret x as t” coincide. The first way of evaluating the truth
would be by forming the formula ¢7 and seeing if A |= ¢¥[s]. The second
way would be to change the assignment function s to interpret x as s(t) and
checking whether the original formula ¢ is true with this new assignment
function. The theorem states that the two methods are equivalent.

Theorem 2.6.2. Suppose that ¢ is an L-formula, x is a variable, t is a
term, and t is substitutable for x in ¢. Suppose that s : Vars — A is a
variable assignment function and that s’ = s[x|3(t)]. Then A = ¢F[s] if

and only if A = ¢[s'].
Proof. We use induction on the complexity of ¢. The first base case is

where ¢ = u; = ug, where u; and us are terms. Then the following are
equivalent:

A k= ofs]
A= (w)f = (u2)i[s]
5((u1)f) =35((u2)?) definition of satisfaction

s (uy) = s (uz) by Lemma [2.6.1
]
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The second base case is where ¢ := R(uj,us,...,u,). This case is
similar to the case above.

The inductive cases involving the connectives V and — follow immedi-
ately from the inductive hypothesis.

This leaves the last inductive case, where ¢ := Vyy. We break this
case down into two subcases: In the first subcase x is y, and in the second
subcase x is not y.

If ¢ :=Vyy and y is x, then ¢7 is ¢. Therefore, A = ¢¥[s] if and only
it A = ¢[s]. But as s and s’ agree on all of the free variables of ¢ (x is not
free), by Proposition A = ¢[s] if and only if A = @[s'], as needed for
this subcase.

The second subcase, where ¢ := Vyi and y is not z, is examined in two
sub-subcases:

Sub-subcase 1: If ¢ := Vy1), y is not x, and x is not free in 1, then we
know by Exercise [f] in Section that ¢ is v, and thus ¢7 is ¢. But
then

oA = g7l it
A = ¢[s] iff
A = o[s'],

as s and s’ agree on the free variables of ¢.

Sub-subcase 2: If ¢ := Vyib, y is not x, and x is free in ¢, then as t is
substitutable for = in ¢ (we had to use that assumption somewhere, didn’t
we?), we know that y does not occur in ¢ and ¢ is substitutable for z in 1.
Then we have

& = 6] it
A= (V) (¥7)Is] iff
A = (¥F)[s[yla]] for every a € A.

But we also know that

A= ¢S] iff
A (Vy)()[s'] iff
2A = s [y|al] for every a € A.

But since x is not y, we know that for any a € A, §'[y|a] = s[y|a][z|5(t)],
so by the inductive hypothesis (notice that ¢ is substitutable for = in ) we
have

A = (WF)[slylal] iff 24 |= ¢[s"[ylal].
So A = ¢F[s] if and only if A = ¢[s'], as needed. O
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2.7 Properties of Our Deductive System

Having gone through all the trouble of setting out our deductive system,
we will now prove a few things both in and about that system. First, we
will show that we can prove, in our deductive system, that equality is an
equivalence relation.

Theorem 2.7.1.
1. Fx==x.
2.Fe=y—>y=u=z.
S F=yry=2)—>z==2.

Proof. We show that we can find deductions establishing that = is reflexive,
symmetric, and transitive in turn.

1. This is a logical axiom of type (E1]).

2. Here is the needed deduction. Notice that the notations off to the
right are listed only as an aid to the reader.

[r=yAz=z]=[r=2—y=1] (E3)
x=z (E1)
r=y—y==z. (PC)

3. Again, we present a deduction:

[z=zry=z]=[z=y—>z=2] (E3)
- (B1)
(r=yANy=2) > x==z (PC) O

Chaff: Notice that we have done a bit more than prove
that equality is an equivalence relation. (Heck, you’ve known
that since fourth grade.) Rather, we’ve shown that our deduc-
tive system, with the axioms and rules of inference that have
been outlined in this chapter, is powerful enough to prove that
equality is an equivalence relation. There will be a fair bit of
“our deductive system is strong enough to do such-and-such” in
the pages to come.

We now prove some general properties of our deductive system. We
start off with a lemma that seems somewhat problematical, but it will help
us to think a little more carefully about what our deductions do for us.

Lemma 2.7.2. ¥ 0 if and only if ¥ V6.
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Proof. First, suppose that X F 6. Here is a deduction from ¥ of Vx0:

Deduction of 6

[(Vy(y =) vV —~(Vyly = y))] = 0 (PC)
[(Yy(y =)V~ (Vyly = y))] — (Vab) (QR)
V0. (PC)

There are a couple of things to point out about this proof. The first
use of (PC) is justified by the fact that if 6 is true, then (anything — ) is
also true. The second use of (PC) depends on the fact that [(Vy(y =y)) V
-(Vy(y = y))] is a tautology, and thus Va0 is a propositional consequence
of the implication. As for the (QR) step of the deduction, notice that the
variable  is not free in the sentence [(Vy(y =y))V ~(Vy(y = y))], making
the use of the quantifier rule legitimate.

Now, suppose that ¥ + Vaf. Here is a deduction from ¥ of 6 (recall
that 0% is 6):

: Deduction of Va6
Vo

Vo — 6 (1Q1)
0s. (PC)
Thus X 0 if and only if ¥ F V6. O

Here is an example to show how strange this lemma might seem. Sup-
pose that ¥ consists of the single formula = 5. Then certainly ¥ F z = 5,
and so, by the lemma, ¥ F (Vz)(x = 5). You might be tempted to say that
by assuming x was equal to five, we have proved that everything is equal
to five. But that is not quite what is going on. If z =5 is true in a model
21, that means that 2 = z = 5[s| for every assignment function s. And
since for every a € A, there is an assignment function s such that s(x) = a,
it must be true that every element of A is equal to 5, so the universe A
has only one element, and everything is equal to 5. So our deduction of
(Vz)(z = 5) has preserved truth, but our assumption was much stronger
than it appeared at first glance. And the moral of our story is: For a for-
mula to be true in a structure, it must be satisfied in that structure with
every assignment function.

Lemma 2.7.3. Suppose that ¥ & 6. Then if X' is formed by taking any
o € X and adding or deleting a universal quantifier whose scope is the entire
formula, X' 6.

Proof. This follows immediately from Lemma [2.7.2] Suppose that Vzo is
in ¥/, By the preceding, ¥’ I 0. Then, given a deduction from ¥ of 6, to
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produce a deduction from Y’ of 6, first write down a deduction from X’ of
o, and then copy your deduction from ¥ of . Having already established
o, this deduction will be a valid deduction from X'.

The proof in the case that Vxo is an element of ¥ and it is replaced by
o in ¥ is analogous. O

Notice that one consequence of this lemma is the fact that if we know
Y F 0, we can assume (if we like) that every element of ¥ is a sentence:
By quoting Lemma [2.7.3] several times, we can replace each o € 3 with its
universal closure.

Now we will show that in at least some sense, the system of deductions
that we have developed mirrors the process that mathematicians use to
prove theorems. Suppose you were asked to prove the theorem: If A is
a square, then A is a rectangle. A perfectly reasonable way to attack this
theorem would be to assume that A is a square, and using that assumption,
prove that A is a rectangle. But notice that you have not been asked to
prove that A is a rectangle. You were asked to prove an implication! The
Deduction Theorem says that there is a deduction of ¢ from the assumption
6 if and only if there is a deduction of the implication § — ¢. (A bit of
notation: Rather than writing the formally correct ¥ U {6} F ¢, we shall
omit the braces and write X U6 - ¢.)

Theorem 2.7.4 (The Deduction Theorem). Suppose that 0 is a sen-
tence and ¥ is a set of formulas. Then YU+ ¢ if and only if ¥ F (0 — o).

Proof. First, suppose that ¥ F (8 — ¢). Then, as the same deduction
would show that XU+ (8 — ¢), and as UG I 0 by a one-line deduction,
and as ¢ is a propositional consequence of 6 and (0 — ¢), we know that
SUOFE ¢.

For the more difficult direction we will make use of Proposition [2:2.4]
Suppose that C = {¢ | ZF (6§ — ¢)}. If we show that C contains X U0, C
contains all the axioms of A, and C' is closed under the rules of inference
as noted in Proposition then by that proposition we will know that
{¢ | ZUOF ¢} C C. In other words, we will know that if ¥ U6 F ¢, then
¥ F (0 — ¢), which is what we need to show.

So it remains to prove that C has the properties listed in the preceding
paragraph.

1. X CC: If o € X, then ¥ 0. But then ¥ F (6§ — o), as this is a
propositional consequence of o.

2. 0 C: ¥ 60 — 0, as this is a tautology.
3. A C C: This is identical to (1).

4. C is closed under the rules:



2.7. Properties of Our Deductive System 65

(a)

Rule (PC): Suppose that 1, s, ...,V are all elements of C' and
¢ is a propositional consequence of {y1,72,...,7n}. We must
show that ¢ € C. By assumption, ¥ - (6 — v1), X F (0 = ~2),

, X F (0 = 7,). But then as (6§ — ¢) is a propositional
consequence of the set

{(0 - ’71)7 (0 - 72)7 ERE) (9 — ’Yn)}7

we have that ¥ F (0 — ¢). In other words, ¢ € C, as needed.

Quantifier Rules: Suppose that ¢ — ¢ is in C and z is not free
in ¢. We want to show that (¢ — Vz¢) is an element of C. In
other words, we have to show that

SE [0 (v — Vag)).

By assumption we have

EI—[0—>(¢—>¢>)] P — ¢isin C
FOAY)— @ propositional consequence
F(@AY) = Vo rule (QR)

[9 = (¢ — V;Egb)] propositional consequence

Notice that our use of rule (QR) is legitimate since we know
that 6 is a sentence, so z is not free in #. But the last line of our
argument says that (¢ — Va¢) € C, which is what we needed
to show.

The other quantifier rule, dealing with the existential quantifier,
is proved similarly.

So we have shown that C contains 6, all the elements of ¥ and A,

and C' is closed under the rules. This finishes the proof of the Deduction
Theorem.

O

2.7.1 Exercises

1.

Lemma tells us that 3+ @ if and only if ¥ F Vzf. What happens
if we replace the universal quantifier by an existential quantifier? So
suppose that ¥ F 6. Must ¥ F d207 Now assume that ¥ - Jx6. Does
¥ necessarily prove 67

Finish the proof of Lemma by considering the case when Vzo is
an element of 3 and is replaced by o in X',

Many authors demand that axioms be sentences rather than formulas.
Explain how Lemma implies that we could replace all of our ax-
ioms by their universal closures without changing the strength of our
deductive system.
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4. Suppose that 7 is a sentence. Prove that ¥ t 7 if and only if YU (-n) F
[(Vz)z = x] A =[(Vz)z = z]. Notice that this exercise tells us that our
deductive system allows us to do proofs by contradiction.

5. Suppose that P is a unary relation symbol and show that
F (Vo) P(z)] — [(3z)P(z)].
[Suggestion: Proof by contradiction (see Exercise [4)) works nicely here.]

6. If P is a binary relation symbol, show that
(Vo) (Vy) Pz, y) = (Vy)(V2) P(2,y).
7. Let P and @ be unary relation symbols, and show that

= {(vz)(P(2)) A (V) (Q(2))] — (Va) [P(x) A Q(2)] .

2.8 Nonlogical Axioms

When we are trying to prove theorems in mathematics, there are almost
always additional axioms, beyond the set of logical axioms A, that we use. If
we are trying to prove a theorem about vector spaces, the axioms of vector
spaces come in mighty handy. If we are proving theorems in a real analysis
course, we need to have axioms about the structure of the real numbers.
These additional axioms are sometimes explicitly stated and sometimes
they are blanket assumptions that are made without being stated, but they
are almost always there. In this section we give a couple of examples of
sets of nonlogical axioms that we might use in writing deductions.

Example 2.8.1. For many of us, the first explicit set of nonlogical axioms
that we see is in a course on linear algebra. To work those axioms out
explicitly, let us fix the language £ as consisting of one binary function
symbol, &, and infinitely many unary function symbols, c-, one for each
real number c. (Yes, that symbol is “c-dot.”) These function symbols will
be used to represent the functions of scalar multiplication. We will also have
one constant symbol, 0, to represent the zero vector of the vector space.
Here, then, is one way to list the nonlogical axioms of a vector space:

1. (Vz)(Vy)z @y = y ® = (vector addition is commutative).

o
<
8
<
<
S~—
—
<
X
&
@
—
<
@
N
Il
—~
8
2
<
~—
@
N
=
(¢
aQ
=+
o
=
&
jol
=
=y
©]
=}
=
&
w0
0
o
Q.
Q
=8
<
&
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6. (Va)(cie2) -2 =c¢1 - (cg- ).
7. (Vo) (My)e- (z®y)=c-xDc-y.
8 (Vx)(c1+e) x=c-x®cy-x.

Notice a couple of things here: There are infinitely many axioms listed,
as the last three axioms are really axiom schemas, consisting of one axiom
for each choice of ¢, ¢1, and ¢3. An axiom schema is a template, saying that
a formula is in the axiom set if it is of a certain form. Also notice that I've
cheated in using the addition sign to stand for addition and juxtaposition
to stand for multiplication of real numbers since the language £ does not
allow that sort of thing. See Exercise

Example 2.8.2. We will write out the axioms for a dense linear order
without endpoints. Our language consists of a single binary relation symbol,
<. Our nonlogical axioms are:

1. Vo) (Vy)(z <yVae=yVy<uz).

2. (Va)(Vy)[z =y = —z < y].

3. (Vo) (Vy)(Va)[(z <y Ay <z) =z <zl

4. (Vo) (Vy)[z <y = (B2) (@ < z2Az < y))].
5. (Va)(Fy)(F2)(y <z Az < 2).

The first three axioms guarantee that the relation denoted by < is a
linear order, the fourth axiom states that the relation is dense, and the final
axiom ensures that there is no smallest element and no greatest element.

Notice that in both of our examples, the axiom set involved is decidable:
Given a formula ¢ that is alleged to be either an axiom for vector spaces
or an axiom for dense linear orders without endpoints, we could decide
whether or not the formula was, in fact, such an axiom. And furthermore,
we could write a computer program that could decide the issue for us.

Example 2.8.3. It is time to introduce a collection of nonlogical axioms
that will be vitally important to us for the rest of the book. We work in
the language of number theory,

LnT = {0, S+, FE, <}.

The set of axioms we will call N is a minimal set of assumptions to describe
a bare-bones version of the usual operations on the set of natural numbers.
Just how weak these axioms are will be discussed in the next chapter. These
axioms will, however, be important to us in Chapters [ [ and [f] precisely
because they are so weak.
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The Axioms of N
1. (Va)-Sz = 0.
2. (Va)(¥y)[Sz = Sy — z = 1]
3. (Vo)z+0=2
4. (Vz)(Vy)z + Sy = S(x +y).
5. (Va)z-0=0
6. (Vo)(Vy)z - Sy = (z-y) +a
7. (Va)zE0 = SO
8. (Vz)(Vy)zE(Sy) = (xEy) -«
9. (Vz)-z <0
10. (Vo)(Vy)[z < Sy« (z <yVa=y)].
11 (Vo) (Vy)[(z <y) V(z=y) V (y < z)].

Although we have just claimed that N is a weak set of axioms, let us
show that N is strong enough to prove some of the basic facts about the
relations and functions on the natural numbers. For the following discus-
sion, if a is a natural number, let @ be the Lyp-term SSS---S0. So @ is

—

)

a S
the canonical term of the language that is intended to refer to the natural
number a.

Lemma 2.8.4. For natural numbers a and b:

1.
2. Ifa#b, then N a #b.
3. Ifa<b, then N+ a<b.
4.
5
6

Ifa="b, then NFa=b.

Ifa £ b, then NFa<b.

.NtFa+b=a+b
. Nta-b=a-b
7.

N+ aEb = ab

Proof. Let us begin with (1), and let us work rather carefully. Notice that
the theorem is saying that if the number a is equal to the number b, then
there is a deduction from the axioms in N of the formula

S55---50=55---50.
— —
aS’s bS’s
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We work by induction on a (and b, since a = b). So, first assume that
a = b= 0. Here is the needed deduction in NN:

Deduction of (Va)z = z (see Lemma [2.7.2)

=
=

(Vz)z ; xr—0=0 (Q1)
0=0. (PC)

Now, what if @ = b and a and b are greater than 07 Then certainly a — 1
and b — 1 are equal, and by the inductive hypothesis there is a deduction
of §§---50=55---50. If we follow that deduction with a use of axiom

a—18’s b—18’s
(E2): x =y — Sz = Sy, and then (PC) gives us SS---S0=55---50,

S’s bS’s
as needed. Write out the details of the end of this de%luction. It is a little
trickier than we have made it sound when you actually have to use (Q1) to
do the substitution. This finishes the inductive step of the proof, so (1) is
established. (Alternatively, you can establish (1) using the axiom (E1) and
several applications of (E2), but we thought you should see the inductive
proof for practice.)

Looking at (2), suppose that a # b. If one of a or b is 0, then —a = b
follows quickly from Axiom N1 and the fact that N proves that = is an
equivalence relation. If neither a nor b is 0, we proceed by induction on
the smaller of a, b. Since a — 1 # b — 1, by the inductive hypothesis,
NF —-a—1=0b—1. Then by Axiom N2, N+ =S(a—1) = S(b—1). In
other words, N - —@ = b, as S (a — 1) is typographically equivalent to @
and S(b— 1) is typographically equivalent to b.

For (3), we use induction on b. As a < b, we know that b # 0 and we
know that a <b—1or a =b— 1. So either

N Fa<b—1 (by the inductive hypothesis)
or

Nra=0b—1 (by (1)).

So - -
NFE@<b—1va=>b-1).

But then by Axiom N10, N =@ < S(b— 1), which is exactly the same as
Nta<b.

We will now discuss (5), leaving (4), (6), and (7) to the exercises. We
prove (5) by induction on b. If b = 0, then a + b =a+0:=a. So Axiom
N3 tells us that N @+ b = a.

For the inductive step, if b = ¢+ 1, then @+ b := @ + S(¢). So Axiom
N4 tells us that

NFa+b=S@+70).
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Since N + @+ ¢ = a + ¢ by the inductive hypothesis, the equality axioms
tell us that N - S(@+¢) = S(a+¢). But S(a+¢) is a+ ¢+ 1, which is
a + b. Since we know (by Theorem that IV F “equality is transitive,”
Nta+b=a+b. O

2.8.1 Exercises

1. This problem is in the setting of Example Exactly one of the
following two statements is in the collection of nonlogical axioms of
that example. Figure out which one it is, and why.

. (Vx)(17442) 2 =17 -2 D42 - z.
. (V)59 -z =172 42 - x.

Now fix up the presentation of the axioms for a vector space. You
may need to redefine the language, or you may be able to take what is
presented in Example 2:.87T] and fix it up.

2. For each of the following structures, decide whether or not it satisfies
all of the axioms of Example[2:8.2] If the structure is not a dense linear
order without endpoints, point out which of the axioms the structure
fails to satisfy.

(a) The structure (N, <), the natural numbers with the usual less than
relation

(b) The structure (Z, <), the integers with the usual less than relation

(¢) The structure (Q, <), the set of rational numbers with the usual
less than relation

(d) The structure (R, <), the real numbers with the usual less than
relation

(e) The structure (C, <), the complex numbers with the relation <
defined by:

a+bi < ¢+ di if and only if (a® + b?) < (c* + d?).

3. Write out the axioms for group theory. If you do not know the axioms of
group theory, go to the library and check out any book with the phrase
“abstract algebra,” “modern algebra,” or “group theory” in the title.
Then check the index under “group.” Specify your language carefully
and then writing out the axioms should be easy.

4. In this exercise you are asked to write up some of the axioms of Zermelo—
Fraenkel set theory, also known as ZF. The language of set theory con-
sists of a single binary relation symbol, €, that is intended to represent
the relation “is an element of.” So the formula x € y will usually be in-
terpreted as meaning that the set x is an element of the set y. Here are
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English versions of some of the axioms of ZF. Write them up formally
as sentences in the language of set theory.

The Axiom of Extensionality: Two sets are equal if and only if they
have the same elements.

The Null Set Axiom: There is a set with no elements.

The Pair Set Axiom: If a and b are sets, then there is a set whose
only elements are a and b.

The Axiom of Union: If a is a set, then there is a set consisting of
exactly the elements of the elements of a. [Query: Can you figure
out why this is called the axiom of union? Write up an example,
where a is a set of three sets and each of those three sets has two
elements. What does the set whose existence is guaranteed by this
axiom look like?]

The Power Set Axiom: If a is a set, then there is a set consisting
of all of the subsets of a. [Suggestion: For this axiom it might be
nice to define C by saying that « C y is shorthand for (some nice
formula with = and y free in the language of set theory).]

5. Complete the proof of Lemma

6. Lemma states that there is a deduction in N of the sentence
—(= 50550). Find a deduction in N of this sentence.

7. This problem is just to give you a hint of how little we can prove using
the axiom system N. Suppose that we wanted to prove that N F/ —z <
2. It makes sense (and is a consequence of the Soundness Theorem,
Theorem that one way to go about this would be to construct an
L nr-structure 2 in which all the axioms of N are true but (Va)—z < x
is not true. Do so. We would suggest that you take as your universe
the set

A=1{0,1,2,3,...} U{a},

where a is the letter ¢ and not a natural number. You need to define
the functions S%, +3, etc., and the relation <*. Don’t do anything too
strange for the natural numbers, but make sure that a <* a. Check
that the axioms of N are true in the structure 2[, and you’re finished!

8. Using more or less the same technique as in Exercise [7} show that N
does not prove that addition is commutative.

2.9 Summing Up, Looking Ahead

In these first two chapters we have developed a vocabulary for talking about
mathematical structures, mathematical languages, and deductions. Chap-



72 Chapter 2. Deductions

ter 2 has focused on deductions, which are supposed to be the formal equiv-
alents of the mathematical proofs that you have seen for many years. We
have seen some results, such as the Deduction Theorem, which indicate
that deductions behave like proofs behave. The Soundness Theorem shows
that deductions preserve truth, which gives us some comfort as we try to
justify in our minds why proofs preserve truth.

As you look at the statement of the Soundness Theorem, you can see
that it is explicitly trying to relate the syntactical notion of deducibility (F)
with the semantical notion of logical implication (|=). The first major result
of Chapter 3, the Completeness Theorem, will also relate these two notions
and will in fact show that they are equivalent. Then the Compactness
Theorem (which is really a quite trivial consequence of the Completeness
Theorem) will be used to construct some mathematical models with some
very interesting properties.



Chapter 3

Completeness
and Compactness

3.1 Naively

We are at a point in our explorations where we have established a particu-
lar deductive system, consisting of the logical axioms and rules of inference
that we set out in the last chapter. The Soundness Theorem showed that
our deductive system preserves truth, in the sense that if there is a deduc-
tion of ¢ from 3, then ¢ is true in any model of ¥. The Completeness
Theorem, the first major result of this chapter, gives us the converse to the
Soundness Theorem. So, when the two results are combined, we will have
this equivalence:

Y | ¢ if and only if ¥ F ¢.

We have already made a big point of the fact that we would like to be
sure that if our deductive system allows us to prove a statement, we would
like that statement to be true. Certainly, the content of the Soundness
Theorem is exactly that. If - ¢, if there is a deduction of ¢ from only
the logical axioms without any additional assumptions, then we know that
E ¢, so ¢ is true in every structure with every assignment function. To
the extent that the informal mathematical practice of everyday proofs is
modeled by our formal system of deduction, we can be sure that the things
that we prove mathematically are true.

If life were peaches and cream, we would also like to know that we
can prove anything that is true. The Completeness Theorem is the result
that asserts that our deductive system s that strong. So you would be
tempted to conclude that, for example, we are able to prove any statement
of first-order logic that is a true statement about the natural numbers.

Unfortunately, this conclusion is based upon a misreading of the state-
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ment of the Completeness Theorem. What we will prove is that our deduc-
tive system is complete, in the sense of this definition:

Definition 3.1.1. A deductive system consisting of a collection of logical
axioms A and a collection of rules of inference is said to be complete if for
every set of nonlogical axioms Y and every L-formula ¢,

If ¥ |= ¢, then 3 I ¢.

What this says is that if ¢ is an L-formula that is true in every model
of X, then there will be a deduction from ¥ of ¢. So our ability to prove ¢
depends on ¢ being true in every model of ¥. Thus if we want to be able to
use X to prove every true statement about the natural numbers, we have to
be able to find a set of non-logical axioms ¥ such that ¥ |= ¢ if and only if
¢ is a true statement about the natural numbers. We will have much more
to say about that problem in Chapters 4, 5, 6, and 7.

The second part of the chapter concerns the Compactness Theorem and
the Lowenheim—Skolem Theorems. We will use these results to investigate
various types of mathematical structures, including structures that are quite
surprising.

In some sense, we have spent a lot of time in the first couple of chapters
of this book developing a lot of vocabulary and establishing some basic
results. Now we will roll up our sleeves and get a couple of worthwhile
theorems. It is time to start showing some of the beauty and the power, as
well as the limitations, of first-order logic.

3.2 Completeness

Let us fix a collection of nonlogical axioms, 3. Our goal in this section is
to show that for any formula ¢, if ¥ = ¢, then ¥ F ¢. In some sense, this is
the only possible interpretation of the phrase “you can prove anything that
is true,” if you are discussing the adequacy of the deductive system. To say
that ¢ is true whenever ¥ is a collection of true axioms is precisely to say
that X logically implies ¢. Thus, the Completeness Theorem will say that
whenever ¢ is logically implied by X, there is a deduction from ¥ of ¢. So
the Completeness Theorem is the converse of the Soundness Theorem.
We have to begin with a short discussion of consistency.

Definition 3.2.1. Let X be a set of L-formulas. We will say that X is
inconsistent if there is a deduction from ¥ of [(Va)z = 2] A ~[(Vz)z = z].
We say that 3 is consistent if it is not inconsistent.

So ¥ is inconsistent if X proves a contradiction. Exercise [1] asks you to
show that if 3 is inconsistent, then there is a deduction from ¥ of every £-
formula. For notational convenience, let us agree to use the symbol L (read
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“false” or “eet”) for the contradictory sentence [(Vz)z = z] A—[(Va)z = z].
All you will have to remember is that L is a sentence that is in every
language and is true in no structure.

Theorem 3.2.2 (Completeness Theorem). Suppose that X is a set of
L-formulas and ¢ is an L-formula. If ¥ | ¢, then X+ ¢.

Proof.

Chaff: This theorem was established in 1929 by the Aus-
trian mathematician Kurt Goédel, in his PhD dissertation. If you
haven’t picked it up already, you should know that the work of
Godel is central to the development of logic in the twentieth
century. He is responsible for most of the major results that we
will state in the rest of the book: The Completeness Theorem,
the Compactness Theorem, and the two Incompleteness Theo-
rems. Godel was an absolutely brilliant man, with a complex
and troubled personality. A wonderful and engaging biography
of Godel is [Dawson 97]. The first volume of Gddel’s collected
works, [Godel=Works], also includes a biography and introduc-
tory comments about his papers that can help your understand-
ing of this wonderful mathematics.

The proof we present of the Completeness Theorem is based
on work of Leon Henkin. The idea of Henkin’s proof is brilliant,
but the details take some time to work through. Just to warn
you, this proof doesn’t end until page [§4]

Before we get involved in the details, let us look at a rough outline of
how the argument proceeds. There are a few simplifications and one or
two outright lies in the outline, but we will straighten everything out as we
work out the proof.

Outline of the Proof

There will be a preliminary argument that will show that it is sufficient
to prove that if X is a consistent set of sentences, then ¥ has a model. Then
we will proceed to assume that we are given such a set of sentences, and
we will construct a model for 3.

The construction of the model will proceed in several steps, but the
central idea was introduced in Example The elements of the model
will be variable-free terms of a language. We will construct this model so
that the formulas that will be true in the model are precisely the formulas
that are in a certain set of formulas, which we will call ¥/. We will make
sure that ¥ C ¥, so all of the formulas of ¥ will be true in this constructed
model. In other words, we will have constructed a model of X.
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To make the construction work we will take our given set of L-sentences
Y and extend it to a bigger set of sentences ¥’ in a bigger language L’.
We do this extension in two steps. First, we will add in some new axioms,
called Henkin Axioms, to get a collection 3. Then we will extend 3 to E’
in such a way that:

1. ¥’ is consistent.
2. For every L'-sentence 0, either § € ¥’ or (—0) € X'.

Thus we will say that ¥’ is a maximal consistent extension of X, where
mazimal means that it is impossible to add any sentences to ¥/ without
making Y’ inconsistent.

Now there are two possible sources of problems in this expansion of X
to X'. The first is that we will change languages from £ to L', where
L C L. Tt is conceivable that ¥ will not be consistent when viewed as a
set of L'-sentences, even though ¥ is consistent when viewed as a set of
L-sentences. The reason that this might happen is that there are more £'-
deductions than there are £-deductions, and one of these new deductions
just might happen to be a deduction of L. Fortunately, Lemma will
show us that this does not happen, so X is consistent as a set of £'-sentences.
The other possible problem is in our two extensions of ¥, first to 3 and
then to /. It certainly might happen that we could add a sentence to X
in such a way as to make ¥’ inconsistent. But Lemma [3.2.4] and Exercise
will prove that ¥/ is still consistent.

Once we have our maximal consistent set of sentences ¥/, we will con-
struct a model 2 and prove that the sentences of £’ that are in X/ are
precisely the sentences that are true in 2(. Thus, 2 will be a model of ¥/,
and as X C ¥/, 2 will be a model of X, as well.

This looks daunting, but if we keep our wits about us and do things one
step at a time, it will all come together at the end.

Preliminary Argument

So let us fix our setting for the rest of this proof. We are working in a
language L. For the purposes of this proof, we assume that the language is
countable, which means that the formulas of £ can be written in an infinite
list a1, 2, ..., ap, . ... (An outline of the changes in the proof necessary for
the case when L is not countable can be found in Exercise @)

We are given a set of formulas X, and we are assuming that ¥ = ¢. We
have to prove that X F ¢.

Note that we can assume that ¢ is a sentence: By Lemma[2.7.2] ¥ - ¢ if
and only if there is a deduction from X of the universal closure of ¢. Also,
by the comments following Lemma we can also assume that every
element of ¥ is a sentence. So, now all(!) we have to do is prove that if ¥
is a set of sentences and ¢ is a sentence and if ¥ = ¢, then ¥ F ¢.
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Now we claim that it suffices to prove the case where ¢ is the sentence
L. For suppose we know that if ¥ =1, then ¥ 1, and suppose we are
given a sentence ¢ such that ¥ = ¢. Then X U (—¢) [EL, as there are
no models of ¥ U (—¢), so X U (—¢) FL. This tells us, by Exercise {4 in
Section that X ¢, as needed.

So we have reduced what we need to do to proving that if ¥ =1, then
Y kL, for ¥ a set of L-sentences. This is equivalent to saying that if there
is no model of ¥, then ¥ 1. We will work with the contrapositive: If
3 /L, then there is a model of X. In other words, we will prove:

If ¥ is a consistent set of sentences, then there is a model of 3.

This ends the preliminary argument that was promised in the outline
of the proof. Now, we will assume that ¥ is a consistent set of L-sentences
and go about the task of constructing a model of X.

Changing the Language from L to £,

The model of ¥ that we will construct will be a model whose elements
are variable-free terms of a language. This might lead to problems. For
example, suppose that £ contains no constant symbols. Then there will be
no variable-free terms of £. Or, perhaps £ has exactly one constant symbol
¢, no function symbols, one unary relation P, and

Y ={3zP(x),~P(c)}.

Here ¥ is consistent, but no structure whose universe is {c} (c is the only
variable-free term of £) can be a model of 3. So we have to expand our
language to give us enough constant symbols to build our model.

So let Ly = L, and define

Ly =LoU{c1,¢a,...,Cny. .}
where the ¢;’s are new constant symbols.

Chaff: Did you notice that when we were defining £, we
took something we already knew about, £, and gave it a new
name, L£3? When you are reading mathematics and something
like that happens, it is almost always a clue that whatever hap-
pens next is going to be iterated, in this case to build Ly, L3,
and so on. In those literature courses we took, they called that
foreshadowing.

We say (for the obvious reason) that £; is an extension by constants
of L£y. As mentioned in the outline, it is not immediately clear that X
remains consistent when viewed as a collection of £1-sentences rather than
L-sentences. The following lemma, the proof of which is delayed until
page [84] shows that ¥ remains consistent.



78 Chapter 3. Completeness and Compactness

Lemma 3.2.3. If X is a consistent set of L-sentences and L1 is an ex-
tension by constants of L, then X is consistent when viewed as a set of
L1-sentences.

The constants that we have added to form £; are called Henkin con-
stants, and they serve a particular purpose. They will be the witnesses that
allow us to ensure that any time X claims Jz¢(z), then in our constructed
model 2, there will be an element (which will be one of these constants c)
such that 2 = ¢(c).

Chaff: Recall that the notation Jx¢(z) implies that ¢ is a
formula with x as the only free variable. Then ¢(c) is the result

of replacing the free occurrences of x with the constant symbol
c. Thus ¢(c) is ¢Z.

The next step in our construction makes sure that the Henkin constants
will be the witnesses for the existential sentences in X.

Extending ¥ to Include Henkin Axioms

Consider the collection of sentences of the form 3z6 in the language L£y. As
the language Ly is countable, the collection of Lj-sentences is countable,
so we can list all such sentences of the form Jxf, enumerating them by the
positive integers:

erly 31‘92, 33}93, ceey 33:07,, cee

We will now use the Henkin constants of £; to add to ¥ countably many
axioms, called Henkin axioms. These axioms will ensure that every exis-
tential sentence that is asserted by ¥ will have a witness in our constructed
structure 2. The collection of Henkin axioms is

Hy = {[F26;] — 0;(c;) | (326;) is an Ly sentence},

where 0;(c;) is shorthand for 67 .
Now let ¥y = X, and define

31 =%9UH;.
Chaff: Foreshadowing!

As Y1 contains many more sentences than Y., it seems entirely possible
that 37 is no longer consistent. Fortunately, the next lemma shows that is
not the case. The proof of the lemma is on page

Lemma 3.2.4. If Xy is a consistent set of sentences and X1 is created by
adding Henkin azioms to Xg, then X1 is consistent.
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Now we have X1, a consistent set of £;-sentences. We can repeat this
construction, building a larger language Lo consisting of £; together with
an infinite set of new Henkin constants k;. Then we can let Hy be a new
set of Henkin axioms:

Hy = {[320;] — 0;(k:) | (326;) is an L, sentence},

and let X5 be X1 U Hy. As before, 35 will be consistent. We can continue
this process to build:

e L=LyC Ly CLsy---,an increasing chain of languages.

e Hy, Hy, Hs,...,each H; a collection of Henkin axioms in the language
L;.

e Y =Yy C ¥y C ¥y C ---, where each X, is a consistent set of
L;-sentences.

Let £ = J;co £i and let = Uicoo Xi- Each ¥; is a consistent set

of L£’-sentences, as can be shown by proofs that are identical to those of
Lemmas m and m You will show in Exercise E| that ¥ is a consistent
set of L£’'-sentences.

Extending to a Maximal Consistent Set of Sentences

As you recall, we were going to construct our model 2 in such a way that
the sentences that were true in 2 were exactly the elements of a set of
sentences Y. Tt is time to build ¥’. Since every sentence is either true or
false in a given model, it will be necessary for us to make sure that for every
sentence o € L', either 0 € ¥/ or —o € ¥’. Since we can’t have both o and
-0 true in any structure, we must also make sure that we don’t put both
o and —o into . Thus, ¥’ will be a maximal consistent extension of 3.
To build this extension, fix an enumeration of all of the £’-sentences

01,02y...,0pn,....

We can do this as £ is countable, being a countable union of countable
sets. Now we work our way through this list, one sentence at a time, adding
either o, or the denial of o,, to our growing list of sentences, depending on
which one keeps our collection consistent.

Here are the details: Let 0 = 2, and assume that ©* is known to be a
consistent set of £’-sentences. We will show how to build ¥t D ¥ and
prove that X**! is also a consistent set of £’-sentences. Then we let

Y=xuxlux?u---Ux"U---

You will prove in Exercise 4| that X/ is a consistent set of sentences. It
will be obvious from the construction of ¥*1 from ¥* that ¥’ is maximal,
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and thus we will have completed our task of producing a maximal consistent
extension of 3.

So all we have to do is describe how to get £**! from £* and prove that
YF+1 s consistent. Given ¥¥, consider the set % U {o**1}, where 041 is
the (k4 1)st element of our fixed list of all of the £’-sentences. Let

skl _ P U{opi1}  if Z¥U{ok,1} is consistent,
Y* U {-oks1} otherwise.

You are asked in Exercise [3| to prove that X**1 is consistent. Once you
have done that, we have constructed a maximal consistent ¥’ that extends
.

The next lemma states that X is deductively closed, at least as far as
sentences are concerned. As you work through the proof, the Deduction
Theorem will be useful.

Lemma 3.2.5. If o is a sentence, then o € ¥ if and only if X'+ o.

Proof. Exercise O

Construction of the Model—Preliminaries

We have mentioned a few times that the model of ¥ that we are going to
construct will have as its universe the collection of variable-free terms of
the language £’. Tt is now time to confess that we have lied. It is easy
to see why the plan of using the terms as the elements of the universe is
doomed to failure. Suppose that there are two different terms t; and to
of the language and somewhere in ¥’ is the sentence t; = to. If the terms
were the elements of the universe, then we could not model ', as the two
terms ¢, and ty are not the same (they are typographically distinct), while
¥’ demands that they be equal. Our solution to this problem is to take the
collection of variable-free terms, define an equivalence relation on that set,
and then construct a model from the equivalence classes of the variable-free
terms.

So let T be the set of variable-free terms of the language £’, and define
a relation ~ on T by

t1 ~ to if and only if (t; = t5) € X',

It is not difficult to show that ~ is an equivalence relation. We will verify
that ~ is symmetric, leaving reflexivity and transitivity to the Exercises.
To show that ~ is symmetric, assume that t; ~ t;. We must prove
that to ~ t1. As we know t; ~ to, by definition we know that the sentence
(t1 = t2) is an element of ¥'. We need to show that (t3 = ¢1) € ¥’. Assume
not. Then by the maximality of X/, —(ty = t1) € ¥’. But since we know
that ¥’ + t; = to, by Theorem ¥k ty = t1. (Can you provide the
details?) But since we also know that ¥’ - —(t2 = t1), it must be the case
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that ¥/ F_1, which is a contradiction, as we know that X’ is consistent. So
our assumption is wrong and (t2 = t;) € ¥/, and thus ~ is a symmetric
relation.

So, assuming that you have worked through Exercise [7] we have es-
tablished that ~ is an equivalence relation. Now let [t] be the set of all
variable-free terms s of the language £’ such that ¢ ~ s. So [¢] is the equiv-
alence class of all terms that X’ tells us are equal to t. The collection of all
such equivalence classes will be the universe of our model 2.

Construction of the Model—The Main Ideas

To define our model of ¥/, we must construct an £’-structure. Thus, we
have to describe the universe of our structure as well as interpretations of
all of the constant, function, and relation symbols of the language £’. We
discuss each of them separately.

The Universe A: As explained above, the universe of 2 will be the col-
lection of ~-equivalence classes of the variable-free terms of £’. For
example, if £’ includes the binary function symbol f, the non-Henkin

constant symbol k, and the Henkin constants ¢y, ca,...,cCp, ..., then
the universe of our structure would include among its elements [c17]
and [f(k, c3)]-

The Constants: For each constant symbol ¢ of £’ (including the Henkin
constants), we need to pick out an element ¢ of the universe to be
the element represented by that symbol. We don’t do anything fancy
here:

So each constant symbol will denote its own equivalence class.

The Functions: If f is an n-ary function symbol, we must define an n-ary
function f% : A™ — A. Let us write down the definition of f% and
then we can try to figure out exactly what the definition is saying:

([t (2], - [ta]) = [ftata . . . ta).

On the left-hand side of the equality you will notice that there are n
equivalence classes that are the inputs to the function f%. Since the
elements of A are equivalence classes and f is an n-ary function, that
should be all right. On the right side of the equation there is a single
equivalence class, and the thing inside the brackets is a variable-free
term of £’. Notice that the function f% acts by placing the symbol
f in front of the terms and then taking the equivalence class of the
result.

There is one detail that has to be addressed. We must show that the
function f* is well defined. Let us say a bit about what that means,
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assuming that f is a unary function symbol, for simplicity. Notice
that our definition of f*([t]) depends on the name of the equivalence
class that we are putting into f%. This might lead to problems, as it
is at least conceivable that we could have two terms, ¢; and to, such
that [t;] is the same set as [to], but f2([t1]) and f*([t2]) evaluate to
be different sets. Then our alleged function f% wouldn’t even be a
function. Showing that this does not happen is what we mean when
we say that we must show that the function f is well defined.

Let us look at the proof that our function f* is, in fact, well defined.
Suppose that [t;] = [tz]. We must show that f2([t1]) = f*([tz2])-
In other words, we must show that if [t;] = [t2], then [ft1] = [ft2].
Again looking at the definition of our equivalence relation ~, this
means that we must show that if ¢t = t5 is an element of ', then so
is f(t1) = f(t2). So assume that t; = t2 is an element of ¥'. Here is
an outline of a deduction from ¥’ of f(t1) = f(t2):

r=y— f(&) = f(y) axiom (E2)

ty =ty — f(t1) = f(t2)

t1 = to element of ¥’

f(tr) = f(t2) PC
Since X' b f(t1) = f(t2), Lemma [3.2.5] tells us that f(t;) = f(t2) is

an element of ¥', as needed. So the function f2 is well defined.

The Relations: Suppose that R is an n-ary relation symbol of £'. We

must define an n-ary relation R* on A. In other words, we must
decide which n-tuples of equivalence classes will stand in the relation
R*. Here is where we use the elements of ¥'. We define R* by this
statement:

R*([t1],[ta], . . ., [tn]) is true if and only if Rtity...t, € X'

So elements of the universe are in the relation R if and only if ¥/ says
they are in the relation R. Of course, we must show that the relation
R* is well defined, also. Or rather, you must show that the relation
R¥ is well defined. See Exercise ]l

At this point we have constructed a perfectly good L’-structure. What

we have to do next is show that 2 makes all of the sentences of ¥’ true.
Then we will have shown that we have constructed a model of X'.

Proposition 3.2.6. A =¥’
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Proof. We will in fact prove something slightly stronger. We will prove, for
each sentence o, that

o €Y if and only if A = 0.

Well, since you have noticed, this isn’t really stronger, as we know that ¥’
is maximal. But it does appear stronger, and this version of the proposition
is what we need to get the inductive steps to work out nicely.

We proceed by induction on the complexity of the formulas in ¥’. For
the base case, suppose that ¢ is an atomic sentence. Then o is of the form
Rtits ... t,, where R is an n-ary relation symbol and the ¢;’s are variable
free terms. But then our definition of R® guaranteed that 2 = o if and
only if 0 € ¥’. Notice that if Ris = and o is t; = tg, then o € X iff t; ~ ty

For the inductive cases, suppose first that o := —«, where we know by
inductive hypothesis that 20 = « if and only if a € ¥'. Notice that as ¥/ is
a maximal consistent set of sentences, we know that o € ¥’ if and only if
a &Y. Thus

o€ ¥ ifand only if a ¢ ¥’
if and only if A = o
if and only if 2 E -«
if and only if A = o.

The second inductive case, when o := « 'V 3, is similar and is left to the
Exercises.

The interesting case is when o is a sentence of the form Vx¢. We must
show that Vz¢ € 3 if and only if 2 | Vz¢. We do each implication
separately.

First, assume that Vz¢ € ¥/. We must show that 2 |= V¢, which means
that we must show, given an assignment function s, that 2 = Va¢[s]. Since
the elements of A are equivalence classes of variable-free terms, this means
that we have to show for any variable-free term ¢ that

A = o[s[z([1]]].

But (here is another lemma for you to prove) for any variable-free term ¢
and any assignment function s, 3(¢t) = [t], and so by Theorem we
need to prove that

A = o7 [s]-

Notice that ¢7 is a sentence, so A = ¢F[s] if and only if A = ¢7. But
also notice that X' F @7, as V¢ is an element of ¥/, Vzd — ¢7 is a quantifier
axiom of type (Q1) (t is substitutable for z in ¢ as t is variable-free), and %’
is deductively closed for sentences by Lemma But ¢7 is less complex
than Vz¢, and thus by our inductive hypothesis, 2 = ¢7, as needed.
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For the reverse direction of our biconditional, assume that Vz¢ ¢ ¥'. We
need to show that 2 j= Vzg. As ¥/ is maximal, -Vz¢ € ¥/, By deductive
closure again, this means that 3z—¢ € ¥’. From our construction of ¥/, we
know there is some Henkin constant ¢; such that ([3z—¢] — —¢(c;)) € ¥/,
and using deductive closure once again, this tells us that —¢(c;) € X'
Having stripped off a quantifier, we can assert via the inductive hypothesis
that 2 = —¢(c;), so A = Vg, as needed.

This finishes our proof of Lemma[3.2.6] so we know that the £'-structure
2 is a model of X'. O

Construction of the Model—Cleaning Up

As you recall, back in our outline of the proof of the Completeness Theorem
on page we were going to prove the theorem by constructing a model
of 3. We are almost there. We have a structure, 2, we know that 2 is a
model of Y, and we know that ¥ C ¥/, so every sentence in ¥ is true in
the structure 2. We’re just about done. The only problem is that ¥ began
life as a set of L-sentences, while 2 is an £’-structure, not an £-structure.

Fortunately, this is easily remedied by a slight bit of amnesia: Define the
structure 2 [, (read 2 restricted to L, or the restriction of 2 to L as
follows: The universe of 2 [~ is the same as the universe of 2(. Any constant
symbols, function symbols, and relations symbols of £ are interpreted in
2 [ exactly as they were interpreted in 2, and we just ignore all of the
symbols that were added as we moved from L to £'. Now, 2 | is a perfectly
good L-structure, and all that is left to finish the proof of the Completeness
Theorem is to work through one last lemma:

Lemma 3.2.7. If o is an L-sentence, then A |= o if and only if A= 0.

Proof. (Outline) Use induction on the complexity of o, proving that 2 [ .=
o if and only if o € ¥/, as in the proof of Lemma O

Thus, we have succeeded in producing an L-structure that is a model of
Y, so we know that every consistent set of sentences has a model. By our
preliminary remarks on page we thus know that if ¥ | ¢, then X F ¢,
and our proof of the Completeness Theorem is complete. O

Proofs of the Lemmas

We present here the proofs of two lemmas that were used in the proof
of the Completeness Theorem. The first lemma was introduced when we
expanded the language £ to the language £’ and we were concerned about
the consistency of ¥ in the new, expanded language.

(Lemma [3.2.3)). If ¥ is a consistent set of L-sentences and L' is an
extension by constants of L, then X is consistent when viewed as a set of
L' -sentences.
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Proof. Suppose, by way of contradiction, that ¥ is not consistent as a set of
L’-sentences. Thus there is a deduction (in £’) of L from X. Let n be the
smallest number of new constants used in any such deduction, and let D’ be
a deduction using exactly n such constants. Notice that n > 0, as otherwise
D’ would be a deduction of L in £. We show that there is a deduction of L
using fewer than n constants, a contradiction that establishes the lemma.

Let v be a variable that does not occur in D’, let ¢ be one of the new
constants that occurs in D', and let D be the sequence of formulas (¢;) that
is formed by taking each formula ¢} in D" and replacing all occurrences of
¢ in ¢} by v. The last formula in D is L, so if we can show that D is a
deduction, we will be finished.

So we use induction on the elements of the deduction D’. If ¢} is an
element of D’ by virtue of being an equality axiom or an element of X,
then ¢; = ¢}, and ¢; is an element of a deduction by the same reason. If
¢} is a quantifier axiom, for example (Vz)0’ — 6'},, then ¢; will also be
a quantifier axiom, in this case (Vz)§ — 67. There will be no problems
with substitutability of ¢ for x, given that ¢’ is substitutable for x. If ¢ is
an element of the deduction by virtue of being the conclusion of a rule of
inference (T, ¢'), then (T, ¢) will be a rule of inference that will justify ¢.

This completes the argument that D is a deduction of L. Since D clearly
uses fewer new constant symbols than D’, we have our contradiction and
our proof is complete. O

The second lemma was needed when we added the Henkin axioms to
our consistent set of sentences ¥. We needed to prove that the resulting

set, 3, was still consistent.

(Lemma D . If % is a consistent set of sentences and 3 is created by
adding Henkin axioms to X, then ¥ is consistent.

Proof. Suppose that 3 is not consistent. Let n be the smallest number of
Henkin axioms used in any possible deduction from 3 of L. Fix such a set
of n Henkin axioms, and let o be one of those Henkin axioms. So we know
that

SUHUakFL,

where H is the collection of the other n — 1 Henkin axioms needed in the
proof. Now « is of the form Jz¢$ — ¢(c), where ¢ is a Henkin constant and
¢(c) is our shorthand for ¢Z.

By the Deduction Theorem (Theorem , as « is a sentence, this
means that XU H F —a, so

SUHF3z¢ and S UH - 47

Since Jdx¢ is the same as =Vx—¢, from the first of these facts we know that

S UH - —Va-g. (3.1)
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We also know that ¥ U H - —¢¥. If we take a deduction of —¢? and
replace each occurrence of the constant ¢ by a new variable z, the result is
still a deduction (as in the proof of Lemma above), so LU H F —¢%.
By Lemma [2.7.2] we know that

S UH b VzmgP.

Our quantifier axiom (Q1) states that as long as z is substitutable for z
in =¢%, (which it is, as z is a new variable), then we may assert that
[Vz=¢?] — —(¢%)Z. Therefore

SUHFE =(¢)Z.

But (¢%)z = ¢, so XU H F —¢. But now we can use Lemma again
to conclude that

SUH F Vzé. (3.2)

So, by Equations (3.1) and (3.2), we see that ¥ U H +1. This is a
contradiction, as X U H contains only n — 1 Henkin axioms. Thus we are
led to conclude that ¥ is consistent. O

3.2.1 Exercises
1. Suppose that ¥ is inconsistent and ¢ is an L-formula. Prove that ¥ F ¢.

2. Assume that Xy C X; C X¥q--- are such that each ¥; is a consistent set
of sentences in a language £. Show |JX; is consistent.

3. Show that if IT is any consistent set of sentences and ¢ is a sentence
such that ITU{c} is inconsistent, then IIU{-c} is consistent. Conclude
that in the proof of the Completeness Theorem, if £ is consistent, then
Yk+1 s consistent.

4. Prove that the ¥/ constructed in the proof of the Completeness Theorem
is consistent. [Suggestion: Deductions are finite in length.]

5. Prove Lemma [3.2.5
6. Toward a proof of the Completeness Theorem in a more general setting:

(a) Do not assume that the language £ is countable. Suppose that
you have been given a set of sentences ¥ ,,x that is maximal and
consistent. So for each sentence o, either 0 € ¥, or "0 € Yax.
Mimic the proof of Proposition to convince yourself that we
can construct a model 2 of X.

(b) Zorn’s Lemma implies the following: If we are given a consistent
set of £’-sentences 5], then the collection of consistent extensions
of 3) has a maximal (with respect to C) element .« If you are
familiar with Zorn’s Lemma, prove this fact.
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(c) Use parts (a) and (b) of this problem to outline a proof of the
Completeness Theorem in the case where the language £ is not
countable.

7. Complete the proof of the claim on page that the relation ~ is an
equivalence relation.

8. Show that the relation R* of the structure 2 is well defined. So let R
be a relation symbol (a unary relation symbol is fine), and show that if
[t1] = [t2], then R*([t1]) is true if and only if R*([t2]) is true.

9. Finish the inductive clause of the proof of Proposition [3.2.6
10. Fill in the details of the proof of Lemma [3.2.

3.3 Compactness

The Completeness Theorem finishes our link between deducibility and log-
ical implication. The Compactness Theorem is our first use of that link. In
some sense, what the Compactness Theorem does is focus our attention on
the finiteness of deductions, and then we can begin to use that finiteness
to our advantage.

Theorem 3.3.1 (Compactness Theorem). Let ¥ be any set of azioms.
There is a model of ¥ if and only if every finite subset o of ¥ has a model.

We say that ¥ is satisfiable if there is a model of 3, and we say that
Y is finitely satisfiable if every finite subset of ¥ has a model. So the
Compactness Theorem says that ¥ is satisfiable if and only if ¥ is finitely
satisfiable.

Proof. For the easy direction, suppose that > has a model 2. Then 2 is
also a model of every finite ¥y C X.

For the more difficult direction, assume there is no model of 3. Then
Y L. By the Completeness Theorem, 3 1, so there is a deduction D of
1 from ¥. Since D is a deduction, it is finite in length and thus can only
contain finitely many of the axioms of . Let ¥ be the finite set of axioms
from ¥ that are used in D. Then D is a deduction from X, so X9 FL. But
then by the Soundness Theorem, ¥y =1, so Xy cannot have a model. [

Corollary 3.3.2. Let X be a set of L-formulas and let 6 be an L-formula.
Y = 0 if and only if there is a finite Xog C 3 such that Xo = 0.

Proof.
YEQifftEF0 Soundness and Completeness
iff Yo F 0 for a finite X9 € X  deductions are finite
iff o =6 Soundness and Completeness

O
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Now we are in a position where we can use the Compactness Theorem
to get a better understanding of the limitations of first-order logic—or, to
put a more positive spin on it, a better understanding of the richness of
mathematics!

Example 3.3.3. Suppose that we examine the Lyp-structure 91, whose
universe is the set of natural numbers N, endowed with the familiar arith-
metic functions of addition, multiplication, and exponentiation and the
usual binary relation less than. It would be nice to have a collection of
axioms that would characterize the structure 91. By this we mean a set
of sentences ¥ such that 9 = 3, and if 2 is any £yr-structure such that
A E X, then A is “just like” . (A is “Just like” N if there A and N are
isomorphic—see Exercise [5|in Section .

Unfortunately, we cannot hope to have such a set of sentences, and the
Compactness Theorem shows us why. Suppose we took any set of sentences
> that seemed like it ought to characterize 91. Let us add some sentences
to X and create a new collection of sentences O in an extended language
L = Ly7 U{c}, where ¢ is a new constant symbol:

©=XU{0<¢S0<¢SS0<e¢,...,885---S0<e¢,...}.
—
nS’s
Now notice that © is finitely satisfiable: If ©g is a finite subset of O,
then ©g is a subset of

0,=3U{0<¢S0<¢SS0<e¢,...,885---50< ¢}
—
nS’s

for some natural number n. But ©,, has a model 91,,, whose universe is N,
the functions and relations are interpreted in the usual way, and ¢™» = n+1.
So every finite subset of © has a model, and thus © has a model 2. Now
forget the interpretation of the constant symbol ¢ and you are left with an
Lnr-structure A = A’ [, ,. This model A is interesting, but we cannot
claim that 2 is “just like” N, since A has an element (the thing that used
to be called cm/) such that there are infinitely many elements z that stand
in the relation < with that element, while there is no such element of
M. The element ¢ is called a nonstandard element of the universe, and
2 is another example of a nonstandard model of arithmetic, a model of
arithmetic that is not isomorphic to 91. We first encountered nonstandard
models of arithmetic in Exercise [0 of Section R.811

So no set of first-order sentences can completely characterize the natural
numbers.

Chaff: Isn’t this neat! Notice how each of the 91,’s in the
last example were perfectly ordinary models that looked just
like the natural numbers, but the thing that we got at the end
looked entirely different!
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Definition 3.3.4. If 2 is an L-structure, we define the theory of 2 to be
Th(A) = {¢ | ¢ is an L-formula and A = ¢}. If A and B are L-structures
such that Th(A) = Th(B), then we say that 2 and B are elementarily
equivalent, and write % = 8.

If 2 = N, we say that 2 is a model of arithmetic

Example (continued). Notice that the weird structure 2l that we con-
structed above can be a model of arithmetic if we just let the ¥ of our
construction be Th(91). Exercise [2| asks you to prove that in this case we
have 20 = 9. Since 2 certainly is not anything like the usual model of arith-
metic on the natural numbers, calling 2 a nonstandard model of arithmetic
makes pretty good sense. The difficult thing to see is that although the
universe A certainly contains nonstandard elements, they don’t get in the
way of elementary equivalence. The reason for this is that the language
LyT can’t refer to any nonstandard element explicitly, so we can’t express
a statement that is (for example) true in 91 but false in 2. So the lesson
to be learned is that it is much easier for two structures to be elementarily
equivalent than it is for them to be isomorphic: Our structure 2 is not
isomorphic to 91, but 2 is elementarily equivalent to 1.

Example 3.3.5. Remember those €¢’s and §’s from calculus? They were
introduced in the nineteenth century in an attempt to firm up the founda-
tions of the subject. When they were developing the calculus, Newton and
Leibniz did not worry about limits. They happily used quantities that were
infinitely small but not quite zero and they ignored the logical difficulties
this presented. These infinitely small quantities live on in today’s calculus
textbooks as the differentials dx and dy.

Most people find thinking about differentials much easier than fighting
through limit computations, and in 1961 Abraham Robinson developed a
logical framework for calculus that allowed the use of these infinitesimals in
a coherent, noncontradictory way. Robinson’s version of the calculus came
to be known as nonstandard analysis. Here is a rough introduction (for a
complete treatment, see [Keisler 76]).

Taking as our starting point the real numbers that you know so well, we
construct a language Lg, the language of the real numbers. For each real
number 7, the language Lr includes a constant symbol 7. So the language
Lr includes constant symbols 0,7, and % For each function f : R™ — R,
we toss in a function symbol f, and for each n-ary relation R on the reals
we add an n-ary relation symbol R. So our language includes, for example,
the function symbols 4+ and cos and the relation symbol <.

Now we define R to be the Lg-structure (R, {r},{f},{R}), where each
symbol is interpreted as meaning the number, function, or relation that
gave rise to the symbol. So the function symbol + stands for the function
addition, and the constant symbol 7 refers to the real number that is equal
to the ratio of the circumference of a circle to its diameter.
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Given this structure % (notice that 9 is not anything fancy—it is just
the real numbers you have been working with since high school), it generates
the set of formulas Th(R), the collection of first-order Lg-formulas that are
true statements about the real numbers. Now it is time to use compactness.

Let £ = Lg U {c}, where ¢ is a new constant symbol, and look at the
collection of £’-sentences

O = Th(R) U {0<c} U {c<r | r € R,r > 0}.

(Are you clear about the difference between the dotted and the undotted
symbols in this definition?)

By the Compactness Theorem, © has a model, 2, and in the model 2,
the element denoted by ¢ plays the role of an infinitesimal element: It is
positive, yet it is smaller than every positive real number. Speaking roughly,
in the universe A of the structure 2 there are three kinds of elements. There
are pure standard elements, which constitute a copy of R that lives inside
A. Then there are pure nonstandard elements, for example, the element
denoted by c. Finally, there are elements such as the object denoted by
174¢, which has a standard part and a nonstandard part. (For more of the
details, see Exercise [11]in Section [3.4.1})

The nonstandard elements of the structure $R provide a method for
developing derivatives without using limits. For example, we can define the
derivative of a function f at a standard element a to be

fla+c) = f(a)

f'(a) = the standard part of -

As you can see, there is no limit in the definition. We have traded
the limits of calculus for the nonstandard elements of 2, and the slope
of a tangent line is nothing more than a slope of a line connecting two
points, one of which is not standard. Nonstandard analysis has been an
area of active study for the past forty years, and although it is not exactly
mainstream, it has been used to discover some new results in various areas
of classical analysis.

Example 3.3.6. The idea of coloring a map is supposed to be intuitive.
When you were in geography class as a child, you were doubtless given a
map of a region and asked to color in the various countries, or states, or
provinces. And you were missing the point if you used the same color to
shade two countries that shared a common border, although it was permit-
ted to use the same color for two countries whose borders met at a single
point. (The states of Utah, Colorado, Arizona, and New Mexico do this in
the United States, so coloring both Colorado and Arizona with the color
red would be permitted.) The question of how many colors are needed
to color any map drawn on the plane was first posed in 1852 by Francis
Guthrie, and the answer, that four colors suffice for any such map (as long
as each political division consists of a single region—Michigan in a map
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of the United States or pre-1971 Pakistan in a map of Asia would not be
permitted), was proven in 1976 by Kenneth Appel and Wolfgang Hakin.
We are not going to prove the Four-Color Theorem here; rather, we extend
this result by considering maps with infinitely many regions.

Let R be a set (I'm thinking of the elements of R as being the regions
of a map with infinitely many countries) with a symmetric binary relation
A (adjacency). Let k be a natural number. We claim that it is possible
to assign to each region of R one of k possible colors in such a way that
adjacent regions receive different colors if and only if it is possible to so
color each finite subset of R.

We will prove this using the Compactness Theorem. One of the tricks
to using compactness is to choose your language wisely. For this example,
let the language £ counsist of a collection of constants {r},cr, one for each
region, and a collection of unary predicates {C; }1<i<k, one for each color.
So the atomic statement C;(r) will be interpreted as meaning that region
r gets colored with color i. We will also need a binary relation symbol A,
for adjacency.

Let X be the collection of sentences:

Ci(r)vVCy(r)V---VCi(r) foreachreR

S[Ci(r) A Cj(r)] reRi#]j

Y=qA(r, ") = (2Ci(r)ANCi(r") rr'eR1<i<k
A(r, ") r,r’ € R,r adjacent to r’
—A(r, ") r,7" € R,r not adjacent to 7.

Chaff: Stop now for a minute and make sure that you un-
derstand each of the sentences in . You ought to be able to
say, in ordinary English, what each sentence asserts. For exam-
ple, C1(r)V Cao(r) V- - -V Ci(r) says that region r must be given
one of the k colors. In other words, we have to color each region
on the map. Take the time now to translate each of the other
statement types of ¥ into English.

But now our claim that an infinite map is k-colorable if and only if
each finite subset of the map is k-colorable is clear, as a coloring of (a
finite subset of) R corresponds to a model of (a finite subset of) 3, and the
Compactness Theorem says that ¥ has a model if and only if every finite
subset of ¥ has a model.

Notice that no quantifiers are used in this example, so we really only
needed compactness for predicate logic, not first-order logic. If you are
comfortable with the terms, notice also that the proof works whether there
are a countably infinite or an uncountably infinite collection of countries.

If you have really been paying attention, you noticed that we did not
use the fact that the maps are drawn on the plane. So if we draw a map
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on a donut with uncountably many countries, it only takes seven colors to
color the map, as it was proven in 1890 by Percy John Heawood that seven
colors suffice for finite maps drawn on a donut.

Example 3.3.7. You may well be familiar with mathematical trees, as
they are often discussed in courses in discrete mathematics or introductory
computer science courses. For our purposes a tree is a set T' partitioned
into subsets T;, (1 = 0,1,2,...), called the levels of the tree, together with
a function a such that:

1. Ty consists of a single element (called the root of the tree).
2. a: (T —1Tp) — T such that if ¢ € T;,¢ > 0, then a(t) € T;_1.

A path through T consists of a subset P C T such that P N7T; contains
exactly one element for each ¢ and P is closed under a. If ¢ € T, the
immediate predecessor of ¢ is a(t). And an element ¢, is said to be a
predecessor of t; if to = a(a(---a(t1))) for some k > 1.

————

k a’s
We can now use the Compactness Theorem to prove

Lemma 3.3.8 (Ko6nig’s Infinity Lemma). Let T be a tree all of whose
levels are finite and nonempty. Then there is a path through T.

Proof. Suppose that we are given such a tree T. Let £ be the language
consisting of one constant symbol £ for each element ¢ € T, a unary relation
symbol @, which will be true for elements on the path, and one unary
function symbol p, where p(t ) is intended to be the immediate predecessor
of ;.

Let ¥ be the following set of L-formulas:

p(h) =t for each t1,t2 € T such that a(t1) = to
Q) V-V Q(ty) where T, = {t1,t,...,tx} (for each n)

_'( ( ) ( 2)) for t15t2 S Tnatl 7é to
Q) — Q(p(t)) for each t € T — Tj.

We claim that ¥ is finitely satisfiable: Let Yy be a finite subset of X,
and let n be so large that if £ is mentioned in g, then t € ToUT{ U---UT,.
Pick any element t* € T,.1, and build an L-structure 2 by letting the
universe A be the tree T, t% be t, letting p* be the function a, and letting
Q% be the collection of predecessors of t*. It is easy to check that 2 is a
model of Xy, and thus by compactness, there is a structure B such that %
is amodel of ¥. If welet P = {t € T |{® € Q®}, then P is a path through
T, and Konig’s Infinity Lemma is proven. O
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3.3.1 Exercises

1.

A common attempt to try to write a set of axioms that would charac-
terize 9 (see Example [3.3.3)) is to let ¥ be the collection of all Lyp-
formulas that are true in O, and then to argue that this is an element
of X

(Vx)(In)(z = SSS---50).
nS’s
Therefore, there can be no nonstandard elements in any model of X.
Explain why this reasoning fails.

Show that if we let X = Th(MN) in the construction of Example [3.3.3)
then the structure 2 that is constructed is elementarily equivalent to
the structure 9. Thus 2 is a model of arithmetic.

Show that if 2 and B are L-structures such that 2 = B, then 2 = B.

Suppose that ¥ is a set of L-sentences such that at least one sentence
from ¥ is true in each L-structure. Show that the disjunction of some
finitely many sentences from ¥ is logically valid.

Show that every nonstandard model of arithmetic contains an infinite
prime number, that is, an infinite number a such that if a = be, then
either b=1o0r c=1.

Show that if ¢(z) is a formula with one free variable in £y7 such that
there are infinitely many natural numbers a such that N = ¢(z)[s[z]a]],
then in every nonstandard model of arithmetic 9t* there is an infinite
number b such that M* |= ¢(x)[s[x|b]].

Verify that we can use the Compactness Theorem in Example by
verifying that every finite subset of © has a model.

(a) Using only connectives, quantifiers, variables, and the equality
symbol, construct a set of sentences ¥ such that every model of ¥
is infinite.

(b) Prove that if " is a set of sentences with arbitrarily large finite
models, then I' has an infinite model.

(¢) Show that there can be no set of sentences in first-order logic that
characterizes the finite groups. (See Exercise [3]in Section [2.8.1])

(d) Prove that there is no finite set of sentences
o = {¢17¢27"'7¢n}

such that 2 = @ if and only if A is infinite. [Suggestion: Look at
(A1 Apa A Ady)]
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9. Suppose that 31 and Y5 are two sets of sentences such that no structure
is a model of both ¥; and 5. Show there is a sentence « such that
every model of ¥ is also a model of a and furthermore, every model of
Y5 is a model of —a.

10. A binary relation < on a set A is said to be a linear order if

(a) < is irreflexive—(Va € A)(—a < a).
(b) < is transitive—(Va,b,c € A)([a <bAb< c] = a < c).
(c) < satisfies trichotomy—Va,b € A exactly one of the following is

true: a < b,b < a, ora==a.

If a linear order < has the additional property that there are no infinite
descending chains—there do not exist a,as,... € A such that a; >
ag > ag > --- (where a1 > as means as < ap), then the relation < is
a well-order of the set A. Suppose that £ is a language containing a
binary relation symbol <. Show there is no set of L-sentences ¥ such
that ¥ has both of the following properties:

(a) ¥ has an infinite model 2 in which <® is a linear order of A.

(b) If B is any infinite model of %, then <® is a well-ordering of B.
11. Show that < is not a well-order in any nonstandard model of arithmetic.

12. (a) In the structure 2 that was built in Example explain how
we know that

(b) Show that < is a linear order of A, the universe of 2.

(c) Show that < is not a well-order in this structure.

3.4 Substructures and the Lowenheim—Skolem
Theorems

In this section we will discuss a relation between structures. A given set of

sentences may have many different models, and it will turn out that in some

cases those models are related in surprising ways. We begin by defining the
notion of a substructure.

Definition 3.4.1. If 2 and B are two L-structures, we will say that 2l is
a substructure of B, and write 21 C B, if:

1. ACB.

2. For every constant symbol ¢, ¢ = ¢®.
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3. For every n-ary relation symbol R, R* = R n A™.

4. For every n-ary function symbol f, f* = f® [4n. In other words,
for every m-ary function symbol f and every a € A, f%(a) = f¥(a).
(This is called the restriction of the function f% to the set A™.)

Thus a substructure of B is completely determined by its universe, and
this universe can be any nonempty subset of B that contains the constants
and is closed under every function f.

Example 3.4.2. Suppose that we try to build a substructure 2 of the
structure M = (N, 0, 5,4+, -, E,<). Since A must be closed under the func-
tions and contain the constants, the number 0 must be an element of the
universe A. But now, since the substructure must be closed under the func-
tion S, it is clear that every natural number must be an element of A. Thus
I has no proper substructures.

Example 3.4.3. Now, suppose that we try to find some substructures of
the structure B = (N, 0, <), with the usual interpretations of 0 and <. Since
there are no function symbols, any nonempty subset of N that includes the
number 0 can serve as the universe of a substructure 2 C 8.

Suppose that we let 2 = ({0},0,<). Then notice that even though
20 C 9B, there are plenty of sentences that are true in one structure that are
not true in the other structure. For example, (Vz)(Jy)x < y is false in A
and true in 8. It will not be hard for you to find an example of a sentence
that is true in 2 and false in *B.

As Example|3.4.3|shows, if we are given two structures such that 2 C B,
most of the time you would expect that 2 and B would be very different,
and there would be lots of sentences that would be true in one of the
structures that would not be true in the other.

Sometimes, however, truth in the smaller structure is more closely tied
to truth in the larger structure.

Definition 3.4.4. Suppose that 2 and B are L-structures and 2 C 5. We
say that 21 is an elementary substructure of B (equivalently, B is an
elementary extension of 2), and write 2 < B, if for every s: Vars — A
and for every L-formula ¢,

A = ¢[s] if and only if B = ¢[s].

Chaff: Notice that if we want to prove 2l < B, we need only
prove 2 = ¢[s] = B |= ¢[s], since once we have done that, the
other direction comes for free by using the contrapositive and
negations.
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Proposition 3.4.5. Suppose that A < B. Then a sentence o is true in A
if and only if it is true in B.

Proof. Exercise 5] O

Example 3.4.6. We saw earlier that the structure 8 = (N, 0, <) has lots
of substructures. However, 26 has no proper elementary substructures. For
suppose that 2 < 9. Certainly, 0 € A, as 2 is a substructure. Since the
sentence (Jy)[0 < y A (V2)(0 < & — y < x)] is true in B, it must be true
in 2 as well. So

AE Gy [0<yn(Vo)(0<z—y<a).

Thus, for any assignment function s : Vars — A there is some a € A
such that
A= [0 <yAVz)0<z—y< x)] [s[y|a]].

Fix such an s and such an a € A. Now we use elementarity again. Since
A < B and s[y|a] : Vars — A, we know that

B [0<yA(V2)(0 <z y<a)slylall

But in the structure 9B, there is a unique element that makes the formula
[0 <yA(Vz)(0 <z —y < x)| true, namely the number 1. So a must be
the number 1, and so 1 must be an element of A. Similarly, you can show
that 2 € A, 3 € A, and so on. Thus N C A, and 2 will not be a proper
elementary substructure of 8.

This example shows that when building an elementary substructure of a
given structure B, we need to make sure that witnesses for each existential
sentence true in B must be included in the universe of the elementary
substructure 2. That idea will be the core of the proof of the Downward
Léwenheim—Skolem Theorem, Theorem In fact, the next lemma says
that making sure that such witnesses are elements of 2 is all that is needed
to ensure that 2 is an elementary substructure of 8.

Lemma 3.4.7. Suppose that A C B and that for every formula o and
every s : Vars — A such that B = Jzals] there is an a € A such that
B = als[z|a]]. Then A < B.

Proof. We will show, given the assumptions of the lemma, that if ¢ is any
formula and s is any variable assignment function into A, 2 = ¢[s] if and
only if B |= ¢[s], and thus A < B.

This is an easy proof by induction on the complexity of ¢, which we will
make even easier by noting that we can replace the V inductive step by an
3 inductive step, as V can be defined in terms of 3.

So for the base case, assume that ¢ is atomic. For example, if ¢ is
R(z,y), then 2 |= ¢[s] if and only if (s(z), s(y)) € R*. But R* = R¥ N A2,
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so (s(),s(y)) € R* if and only if (s(z), s(y)) € R®. But (s(x),s(y)) € R®
if and only if B | ¢[s], as needed.
For the inductive clauses, assume that ¢ is —=«. Then

A = ¢[s] if and only if A = —als]
if and only if 2 £ als]
if and only if B = afs]  inductive hypothesis
if and only if B | —afs]
if and only if B | ¢[s].

The second inductive clause, if ¢ is a V 3, is similar.

For the last inductive clause, suppose that ¢ is Jdza. Suppose also
that 2 | ¢[s]; in other words, 2 | Jxafs]. Then, for some a € A,
A = «afs[z|a]]. Since s[z|a] is a function mapping variables into A, by our
inductive hypothesis, B = a[s[z|a]]. But then B |= Jza[s], as needed. For
the other direction, assume that B |= Jzals]|, where s : Vars — A. We use
the assumption of the lemma to find an a € A such that B E «fs[z|a]].
As s[z]a] is a function with codomain A, by the inductive hypothesis 2 =
afs[z|a]], and thus 2 | Jza[s], and the proof is complete. O

Chaff: We are now going to look at the Léwenheim—Skolem
Theorems, which were published in 1915. To understand these
theorems, you need to have at least a basic understanding of
cardinality, a topic that is outlined in the Appendix. However,
if you are in a hurry, it will suffice if you merely remember
that there are many different sizes of infinite sets. An infinite
set A is countable if there is a bijection between A and the
set of natural numbers N, otherwise, the set is uncountable.
Examples of countable sets include the integers and the set of
rational numbers. The set of real numbers is uncountable, in
that there is no bijection between R and N. So there are more
reals than natural numbers. There are infinitely many different
sizes of infinite sets. The smallest infinite size is countable.

Theorem 3.4.8 (Downward Léwenheim—Skolem Theorem). Sup-
pose that L is a countable language and B is an L-structure. Then B has
a countable elementary substructure.

Proof. If B is finite or countably infinite, then B is its own countable
elementary substructure, so assume that B is uncountable. As the language
L is countable, there are only countably many L-formulas, and thus only
countably many formulas of the form Jza.

Let Ay be any nonempty countable subset of B. We show how to build
A7 such that Ay C A;, and A; is countable. The idea is to add to Ay
witnesses for the truth (in B) of existential statements.
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Notice that as Ay is countable, there are only countably many functions
s’ : Vars — Ag that are eventually constant, by which we mean there is
a natural number k such that if 4,j > k, then §'(v;) = s'(v;). (This is
a nice exercise for those of you who have had a course in set theory or
are reasonably comfortable with cardinality arguments.) Also, if we are
given any ¢ and any s : Vars — Ag, we can find an eventually constant
s': Vars — Ag such that s and s’ agree on the free variables of ¢, and thus
B = ¢[s] if and only if B = ¢[s'].

The construction of Ai: For each formula of the form Jza and each
s @ Vars — Ap such that B | Jzals], find an eventually constant s’ :
Vars — Aq such that s and s’ agree on the free variables of Jza. Pick an
element a, ¢ € B such that B | a[s[z|aq,s]], and let

A =ApU {aa,s’}all a,s: Vars—Ag -

Notice that A; is countable, as there are only countably many «a’s and
countably many s’.

Continue this construction, iteratively building A,4; from A,. Let
A=U52,A,. As A is a countable union of countable sets, A is countable.

Now we have constructed a potential universe A for a substructure for
8. We have to prove that A is closed under the functions of B (by the
remarks following Definition [3.4.1] this shows that 2 is a substructure of B),
and we have to show that 2 satisfies the criteria set out in Lemma
so we will know that 2l is an elementary substructure of B.

First, to show that A is closed under the functions of 9, suppose that
a € A and f is a unary function symbol (the general case is identical) and
that b = f®(a). We must show that b € A. Fix an n so large that a € A,,,
let ¢ be the formula (Jy)y = f(x), and let s be any assignment function
into A such that s(z) = a. We know that B = (Jy)y = f(z)[s], and we
know that if B |= (y = f(2))[s[y|d]], then d = b. So, in our construction of
Ap 1 we must have used a,—f(,) s =b,50 b € Ayp1, and b € A, as needed.

In order to use Lemma [3.4.7] we must show that if « is a formula and
s : Vars — A is such that B = Jza[s], then there is an a € A such that
B = als[z|a]]. So, fix such an o and such an s. Find an eventually constant
s’ : Vars — A such that s and s’ agree on all the free variables of a. Thus
B | Jzals’], and all of the values of s’ are elements of some fixed A,,
as s’ takes on only a finite number of values. But then by construction of
Apt1, there is an element a of A,,11 such that B = als'[z|a]]. But this
tells us (since s and s’ agree on the free variables of a) that B | «a[s[z|a]],
as needed.

So we have met the hypotheses of Lemma [3.4.7] and thus 2 is a count-
able elementary substructure of 93, as needed. O

Chaff: We would like to look at a bit of this proof a little
more closely. In the construction of A, what we did was to find
an aq,s for each formula dza and each s : Vars — A, and the
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point was that a, s would be a witness to the truth in B of
the existential statement Jza. So we have constructed a func-
tion which, given an existential formula Jza and an assignment
function, finds a value for x that makes the formula « true. A
function of this sort is called a Skolem function, and the con-
struction of A in the proof of the Downward Léwenheim—Skolem
Theorem can thus be summarized: Let Ay be a countable sub-
set of B, and form the closure of Ay under the set of all Skolem
functions. Then show that this closure is an elementary sub-
structure of 8.

Example 3.4.9. We saw an indication in Exercise [4 in Section [2:871] that
the axioms of Zermelo—Fraenkel set theory (known as ZF) can be formal-
ized in first-order logic. Accepting that as true (which it is), we know that
if the axioms are consistent they have a model, and then by the Down-
ward Lowenheim—Skolem Theorem, there must be a countable model for
set theory. But this is interesting, as the following are all theorems of ZF:

e There is a countably infinite set.
e If a set a exists, then the collection of subsets of a exists.

e If a is countably infinite, then the collection of subsets of a is un-
countable. (This is Cantor’s Theorem).

Now, let us suppose that 2 is our countable model of ZF, and suppose
that a is an element of A and is countably infinite. If b is the set of all
of the subsets of a, we know that b is uncountable (by Cantor’s Theorem)
and yet b must be countable, as all of the elements of b are in the model A,
and 2 is countable! So b must be both countable and uncountable! This is
called (somewhat incorrectly) Skolem’s paradox, and Exercise [§] asks you
to figure out the solution to the paradox.

Probably the way to think about the Downward Lowenheim—Skolem
Theorem is that it guarantees that if there are any infinite models of a
given set of formulas, then there is a small (countably infinite means small)
model of that set of formulas. It seems reasonable to ask if there is a similar
guarantee about big models, and there is.

Proposition 3.4.10. Suppose that 3 is a set of L-formulas with an infinite
model. If K is an infinite cardinal, then there is a model of 3 of cardinality
greater than or equal to k.

Proof. This is an easy application of the Compactness Theorem. Expand
L to include x new constant symbols ¢;, and let ' =X U {¢; # ¢; | i # j}.
Then T is finitely satisfiable, as we can take our given infinite model of X
and interpret the c¢; in that model in such a way that c¢; # ¢; for any finite
set of constant symbols. By the Compactness Theorem, there is a structure
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2 that is a model of I', and thus certainly the cardinality of A is greater
than or equal to x. If we restrict 2 to the original language, we get a model
of ¥ of the required cardinality. O

Corollary 3.4.11. If X is a set of formulas from a countable language with
an infinite model, and if K is an infinite cardinal, then there is a model of
Y of cardinality k.

Proof. First, use Proposition to get 9B, a model of ¥ of cardinal-
ity greater than or equal to k. Then, mimic the proof of the Downward
Léwenheim—Skolem Theorem, starting with a set A9 C B of cardinality
exactly k. Then the A that is constructed in that proof also will have
cardinality x, and as 2 < 95, 2 will be a model of ¥ of cardinality k. O

Corollary 3.4.12. If 2 is an infinite L-structure, then there is no set of
first-order formulas that characterize A up to isomorphism.

Proof. More precisely, the corollary says that there is no set of formulas %
such that B | X if and only if 2 = B. We know that there are models
of ¥ of all cardinalities, and we know that there are no bijections between
sets of different cardinalities. So there must be many models of 3 that are
not isomorphic to . O

Chaff: There are sets of axioms that do characterize infi-
nite structures. For example, the second-order axioms of Peano
Arithmetic include axioms to ensure that addition and multipli-
cation behave normally, and they also include the principle of
mathematical induction: If M is a set of numbers, if 0 € M, and
if S(n) € M for every n such that n € M, then (¥Yn)(n € M).

Any model of Peano Arithmetic is isomorphic to the nat-
ural numbers, but notice that we used two notions (sets of
numbers and the elementhood relation) that are not part of
our description of 1. By introducing sets of numbers we have
left the world of first-order logic and have entered second-order
logic, and it is only by using second-order logic that we are
able to characterize 1. For a nice discussion of this topic, see
[Bell and Machover 77, Chapter 7, Section 2].

The results from Proposition to Corollary give us models
that are large, but they have a slightly different flavor from the Downward

Lowenheim—Skolem Theorem, in that they do not guarantee that the small
model is an elementary substructure of the large model. That is the content
of the Upward Lowenheim—Skolem Theorem, a proof of which is outlined
in the Exercises.

Theorem 3.4.13 (Upward Lowenheim—Skolem Theorem). If £ is a
countable language, A is an infinite L-structure, and k is a cardinal, then
A has an elementary extension B such that the cardinality of B is greater
than or equal to k.
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3.4.1 Exercises

1.

Suppose that B C 2, that ¢ is of the form (Vz)1), where v is quantifier-
free, and that 20 = ¢. Prove that B = ¢. The short version of this
fact is, “Universal sentences are preserved downward.” Formulate and
prove the corresponding fact for existential sentences.

Justify the Chaff following Definition
Show that if A < B and € < B and A C €, then A < €.

Suppose that we have an elementary chain, a set of L-structures such
that
Ay <Ay < A3 < -+

and let A = (J;2, ;. So the universe A of 2 is the union of the universes
A;, R* = J:2, R¥, etc. Show that 2; < 2 for each i. [Suggestion: To
show that 2; C 2 is pretty easy by the definition. To get that 2 is an
elementary extension, you have to use induction on the complexity of
formulas. Notice by the comments following Definition that you
need only prove one direction. You may find it easier to use 3 rather
than V in the quantifier part of the inductive step of the proof.]

Prove Proposition [3.4.5]

Show that if % < 9B and if there is an element b € B and a formula
¢(x) such that B = ¢[s[z|b]] and for every other b € B, B [~ ¢[s[x|b]],
then b € A. [Suggestion: This is very similar to Example [3.4.6]]

Suppose that B = {N,+,-}, and let Ay = {2,3}. Let F be the set of
Skolem functions {fa s} corresponding to as of the form (Iz)z = yz.
Find the closure of Ay under F. [Suggestion: Do not forget that the
assignment functions s that you need to consider are functions mapping
into Ag at first, then Ay, and so on. You probably want to explicitly
write out Aj, then As, etc. We are using the notation here correspond-

ing to the proof of Theorem [3.4.8]]

To say that a set a is countable means that there is a function with
domain the natural numbers and codomain a that is a bijection. No-
tice that this is an existential statement, saying that a certain kind of
function exists. Now, think about Example and see if you can
figure out why it is not really a contradiction that the set b is both
countable and uncountable. In particular, think about what it means
for an existential statement to be true in a structure 2, as opposed to
true in the real world (whatever that means!).

(Toward the Proof of the Upward Léwenheim—Skolem Theorem) If A
is an L-structure, let £(A) = LU{@ | a € A}, where each @ is a new
constant symbol. Then, let 2 be the £(A)-structure having the same
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universe as 2 and the same interpretation of the symbols of £ as %,
and interpreting each @ as a. Then we define the complete diagram
of A as

Th(A) = {0 | o is an L(A)-formula such that 2 = o}.

Show that if B is any model of Th(), and if B = B [, then A
is isomorphic to an elementary substructure of 9B. [Suggestion: Let
h: A — B be given by h(a) = a@>. Let C be the range of h. Show C
is closed under f% for every f in £, and thus C' is the universe of ¢, a
substructure of 8. Then show h is an isomorphism between 2 and €.
Finally, show that € < 9]

10. Use Exercise [9] to prove the Upward Lowenheim—Skolem Theorem by
finding a model B of the complete diagram of the given model 2 such
that the cardinality of B is greater than or equal to k.

11. We can now fill in some of the details of our discussion of nonstan-
dard analysis from Example As the language L of that example
already includes constant symbols for each real number, the complete
diagram of R is nothing more than Th(R). Explain how Exercise |§|
shows that there is an isomorphic copy of the real line living inside the
structure 2.

3.5 Summing Up, Looking Ahead

We have proven a couple of difficult theorems in this chapter, and by un-
derstanding the proof of the Completeness Theorem you have grasped an
intricate argument with a wonderful idea at its core. Our results have been
directed at structures: What kinds of structures exist? How can we (or
can’t we) characterize them? How large can they be?

The next chapter begins our discussion of Kurt Gédel’s famous incom-
pleteness theorems. Rather than discussing the strength of our deductive
system as we have done in the last two chapters, we will now discuss the
strength of sets of axioms. In particular, we will look at the question of
how complicated a set of axioms must be in order to prove all of the true
statements about the standard structure 1.

In Chapter 4 we will introduce the idea of coding up the statements
of Ly7 as terms and will show that a certain set of nonlogical axioms is
strong enough to prove some basic facts about the numbers coding up those
statements. Then, in Chapters 5 and 6, we will bring those facts together
to show that the expressive power we have gained has allowed us to express
truths that are unprovable from our set of axioms.

Alternatively, after Chapter 4 you can move straight to Chapter 7 and
approach the issue of provability from another direction. But for now, on
to Chapter 4!



Chapter 4

Incompleteness
From Two Points of View

4.1 Introduction

Now, we hope that you have been paying attention closely enough to be
bothered by the title of this chapter. The preceding chapter was about
completeness, and we proved the Completeness Theorem. Now we seem
to be launching an investigation of incompleteness! This point is pretty
confusing, so let us try to start out as clearly as possible.

In Chapter [3| we proved the completeness of our axiomatic system. We
have shown that the deductive system described in Chapter [2]is sound and
complete. What does this mean? For the collection of logical axioms and
rules of inference that we have set out, any formula ¢ that can be deduced
from a set of nonlogical axioms ¥ will be true in all models of ¥ under
any variable assignment function (that’s soundness), and furthermore any
formula ¢ that is true in all models of ¥ under every assignment function
will be deducible from ¥ (that’s completeness). Thus, our deductive system
is as nice as it can possibly be. The rough version of the Completeness and
Soundness Theorems is: We can prove it if and only if it is true everywhere.

Now we will change our focus. Rather than discussing the wonder-
ful qualities of our deductive system, we will concentrate on a particular
language, Ly7, and think about a particular structure, 91, the natural
numbers.

Wouldn’t life be just great if we knew that we could prove every true
statement about the natural numbers? Of course, the statements that we
can prove depend on our choice of nonlogical axioms X, so let us start this
paragraph over.

Wouldn’t life be just great if we could find a set of nonlogical axioms

103
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that could prove every true statement about the natural numbers? We
would love to have a set of axioms ¥ such that 9 = X (so our axioms are
true statements about the natural numbers) and 3 is rich enough so that
for every sentence o, if 9 |= o, then X I 0. Since ¥ has a model, we know
that ¥ is consistent, so by soundness our wished-for 3 will prove exactly
those sentences that are true in 9. The set of sentences of Ly that are
true in N is called the Theory of M, or Th(MN).

Since we know that a sentence is either true in 91 or false in 91, this set
of axioms Y is complete—complete in the sense that given any sentence o,
Y. will provide either a deduction of ¢ or a deduction of —o.

Definition 4.1.1. A set of nonlogical axioms ¥ in a language £ is called
complete if for every L-sentence o, either ¥ F o or ¥ + —o.

Chaff: To reiterate, in Chapter [3| we showed that our de-
ductive system is complete. This means that for a given X, the
deductive system will prove exactly those formulas that are log-
ical consequences of . When we say that a set of azioms is
complete, we are saying that the axioms are strong enough to
provide either a proof or a refutation of any sentence. This is
harder.

Our goal is to find a complete and consistent set of £y7-axioms 3 such
that 9 = X. So this set ¥ would be strong enough to prove every L£yr-
sentence that is true in the standard structure 9. Such a set of axioms is
said to axiomatize Th(N).

Definition 4.1.2. A set of axioms ¥ is an axiomatization of Th(M) if
for every sentence o € Th(M), X F 0.

Actually, as stated, it is pretty easy to find an axiomatization of Th():
Just let the axiom set be Th(N) itself. This set clearly axiomatizes itself,
so we are finished! Off we go to have a drink. Of course, our answer to the
search has the problem that we don’t have an easy way to tell exactly which
formulas are elements of the set of axioms. If we took a random sentence
in Ly7 and asked you if this sentence were true in the standard structure,
we doubt you’d be able to tell us. The truth of nonrandom sentences is
also hard to figure out—consider the twin prime conjecture, that there are
infinitely many pairs of positive integers k and k + 2 such that both k
and k + 2 are prime. People have been thinking about that one for over
2000 years and we don’t know if it is true or not, although we seem to be
currently (summer 2014) getting close. But at least as of now, we really
have no idea if the twin prime conjecture is in Th(91) or not. So it looks
like Th(91) is unsatisfactory as a set of nonlogical axioms.

So, to refine our question a bit, what we would like is a set of nonlogical
axioms ¥ that is simple enough so that we can recognize whether or not
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a given formula is an axiom (so the set of axioms should be decidable)
and strong enough to prove every formula in Th(91). So we search for a
complete, consistent, decidable set of axioms for 91. Unfortunately, our
search is doomed to failure, and that fact is the content of Godel’s First
Incompleteness Theorem, which we shall prove in Chapter [6] then again in
Chapter (You know a theorem is important if we're going to prove it
more than once...)

What, precisely, is it that we will do? Given any complete, consistent,
and decidable set of axioms for 91, we are going to find a sentence o that
is a true statement about the natural numbers (so o € Th(NM)) but o will
not be provable from the collection of axioms. And how complicated must
this sentence o be? It turns out that it doesn’t have to be very complicated
at all. The next subsection will provide some structure to the collection
of Lyp-formulas and give us some language with which to talk about the
complexity of formulas.

4.2 Complexity of Formulas

We work in the language of number theory
‘CNT - {07 S7 +a Yy E) <}a

and we will continue to work in this language for the next few chapters. 1
is the standard model of the natural numbers,

N = (N707S7+7'5E7<)7

where the functions and relations are the usual functions and relations
that you have known since you were knee high to a grasshopper. FE is
exponentiation, which will usually be written ¥ rather than Fzy or xFy.

One way to think about the simplest formulas of the language of the nat-
ural numbers (of any language, really) are the formulas that do not involve
any quantifiers. It does seem natural that the formula SO = y is simpler
than V250 = y. One baby step more complicated than quantifier-free for-
mulas are the formulas that contain what we will call bounded quantifiers:

Definition 4.2.1. If x is a variable that does not occur in the term t, let
us agree to use the following abbreviations:

(Vx < t)¢ means Va(x <t — ¢)

(Vz <t)¢ means Va((z <tVz=t)— @)
(Jz < t)¢ means Fx(z <tAQP)
(Jz <t)¢ means Fx((z <tVz=1t)Agp).

These abbreviations will constitute the set of bounded quantifiers.
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Thus, the formula 3z((Vy < 42)y = Sz) is a formula with one bounded
quantifier and one unbounded quantifier.

Remember that our goal is to produce a sentence that is true in 91 and
not provable from our set of axioms. Might we be able to find such a formula
that only contains bounded quantifiers? That would be really great, but
unfortunately it is not going to happen. Recall our set of axioms N, back
in Section 28 If you flip back to page [68] you will see that all of these
axioms are true statements about the natural numbers, so they should be a
consequence of any potential set of axioms for Th(91). But N is actually a
pretty strong collection of statements. In particular, N is robust enough to
prove every true statement about 91 that contains only bounded quantifiers.
Even better, IV can refute every false statement that contains only bounded
quantifiers. We’ll prove this fact in Proposition Since any potential
candidate for an axiomitization of 91 must be at least as strong as IV, this
tells us that our quest for a formula that is both true in 91 and not provable
must look at formulas that contain at least some unbounded quantifiers.

Definition 4.2.2. The collection of Y-formulas is defined as the smallest
set of Ly formulas such that:

1. Every atomic formula is a 3-formula.
2. Every negation of an atomic formula is a 3-formula.
3. If o and B are X-formulas, then oA 8 and aV 8 are both X-formulas.

4. If « is a X-formula, and z is a variable that does not occur in the
term ¢, then the following are X-formulas: (Va < t)a, (Vo < t)a,
(Fz < t)a, (Fz < t)a.

5. If a is a X-formula and z is a variable, then (3z)a is a 3-formula.

We will prove later (Theorem [5.3.13]) that in fact our set of axioms N
is strong enough to prove every true Y-sentence, so even these formulas are
not complicated enough to establish Godel’s incompleteness result. How-

ever, if instead of allowing an unbounded existential quantifier, we allow an
unbounded universal quantifier, the situation is different.

Definition 4.2.3. The collection of II-formulas is the smallest set of £Ly7-
formulas such that:

1. Every atomic formula is a IT-formula.
2. Every negation of an atomic formula is a II-formula.

3. If @ and B are II-formulas, then a A 8 and 'V 3 are both II-formulas.
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4. If « is a II-formula, and z is a variable that does not occur in the
term ¢, then the following are II-formulas: (Vaz < t)a, (Vz < t)a,
(Fz < t)a, (Fz < t)a.

5. If a is a II-formula and «z is a variable, then (Vz)a is a II-formula.

So, while the set of ¥-formulas is closed under bounded quantification
and unbounded existential quantification, the collection of Il-formulas is
closed under bounded quantification and unbounded universal quantifica-
tion.

The major result of the rest of the book, Gédel’s First Incompleteness
Theorem, states that if we are given any consistent and decidable set of
axioms, then there will be a II-formula o such that o is a true statement
about the natural numbers but there is no deduction from our axioms of
the formula o. So our set of axioms must be incomplete. Getting to that
theorem will occupy us for the rest of our time together.

You might notice that every denial of a ¥-formula is logically equivalent
to a II-formula, and vice versa (see Exercise . If we take the intersection
of the collection of ¥-formulas and the collection of II-formulas, we have
the A-formulas:

Definition 4.2.4. The collection of A-formulas is the intersection of the
collection of YX-formulas with the set of II-formulas.

Thus in every A-formula all quantifiers are bounded. It will turn out
that our mysterious (well, it isn’t really that mysterious) set of axioms
N is strong enough to prove every true-in-91 A-formula and refute every
false-in-9t A-formula. This will be very important to us.

4.2.1 Exercises

1. Referring to Definition explain in detail why the following formu-
las are (or are not) X-formulas.

(a) SO+ S0 = S0
(b) (0 <0V0<S0)

(c) (Vo < 17z < 17

(d) S0-S0=S0NFy<z)Fz<yy+z==x
(e) (Vy)(y <0 —0=0)

(1) (32)(z < 2)

2. Let’s define the set of Cool Formulas to be the smallest set of Ly7-
formulas that:

(a) Contains all atomic formulas.
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(b) Contains all negations of atomic formulas.
(¢) Is closed under the connectives A and V.

(d) Is closed under bounded quantifiers and the quantifier 3.

Prove that a formula is Cool if and only if the formula is a X-formula.
(The four conditions above are sometimes used to define the set of X-
formulas. You've just proved that the definition here is equivalent to

Definition [£.2.2] )
3. Think about the X-formula

aisz<yV (Vz<w)z+17=42.

a) Is « a IT-formula?

(a)

(b) Is = a II-formula?

(¢) Can you find a I-formula that is equivalent to —«a?
)

(d) Carefully prove that, if « is any Y-formula, then -« is logically
equivalent to a II-formula.

4.3 The Roadmap to Incompleteness

At the end of the day, we will want to be looking at this true-in-9% II-
formula o that we have constructed and be able to say to it, “There is no
deduction of you.” The construction of the formula ¢ will involve rather
detailed analysis of the collections of deductions, so it will be convenient, if
initially messy, to have a way to translate deductions into natural numbers.
Thus for example, rather than saying “This long sequence of formulas is a
deduction of the formula 0 = 1,” we could say “The number 42 is a code
for a deduction of 0 = 1.”

The other advantage of having this coding is that it will allow us to
code up statements about numbers that code up statements. For example,
it might be the case that the number 24601 is a code for the statement,
“The number 42 is a code for a deduction of 0 = 1.” Or even (and this
is the key idea) 24601 might be the code for the statement, “There is no
number that is a code for a deduction of the formula for which I am the
code.” The rather messy details of this will be covered in Chapter [6}

This all hinges on the facts that it is easy to code statements as numbers
and decode numbers to see what statements they encode. Also, it is easy
to check whether a potential deduction is, in fact, a deduction. Recall that
a deduction is nothing more than a finite sequence of formulas, each one of
which is either an axiom or follows from previous formulas in the sequence
via a rule of inference. Thus, once we decide on a way to code formulas
and to code sequences of formulas, it will not be a problem to examine a
number and decide if that number codes up a deduction or not. Thus our
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path forward will be to fix our coding scheme, prove that the coding is nice,
use the coding scheme in order to construct the formula o, and then prove
that o is both true and not provable. This route to the Incompleteness
Theorem is followed in Chapters [5] and [6}

4.4 An Alternate Route

A second route to incompleteness focuses not on formulas and deductions,
but rather on functions mapping the natural numbers to the natural num-
bers. This line of reasoning, developed in the late 1930s, has a clear connec-
tion to computation and theoretical computer science. By thinking care-
fully about what it means for a function to be computable and just what
a computation is, we will once again be able to show the existence of a
formula that is true and yet not provable. The details of this plan are laid
out in Chapter

When is a function computable? The idea is that to say that a function
f is computable on input k means that there is a sequence of easy steps
that leads to the correct output f(k). We will make this precise in Chapter
[7l but roughly it means that one can start with some easy functions and
build up the function f by some relatively simple operations on previously
defined functions.

Thus it looks like that in order to carefully define what it means to
compute a function, we will be required to discuss sequences of partial
computations, and once again it will be convenient to be able to code up
these sequences as natural numbers. So even if we take this functionally
based route to the Incompleteness Theorem, we will need to be familiar
with some coding apparatus. Since both of our routes to the Incompleteness
Theorem will require us to code up sequences, we will take the rest of this
chapter to fix our notation and establish a couple of easy results.

4.5 How to Code a Sequence of Numbers
Suppose we have a finite sequence of numbers, maybe
2,4,3,5,9

and we wish to code them up as a single number. An easy way to do this
would be to code the sequence into the exponents of the first few prime
numbers and then multiply them together:

22.3%.5%.7°.11° = 1605016087126798500.

This would be easy, but unfortunately it will not suffice for our purposes,
so we’ll have to be a little sneakier. Fortunately, by being clever now, life
will be simpler later, so it seems to be worth the effort.
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You're probably thinking that it would be easy to decide if a number
was a code for a sequence. Obviously 72 = 2332 wants to be the code for
the sequence 3,2, and the number 10 is not a code number, since 10 =2-5
is not a product of the first few primes.

Sorry.

Your perfectly fine idea runs into trouble if we try to code up sequences
that include the number 0. For example if we were to code up the sequence

1,0,1

we would get 2'-3°%.5' = 10, and so 10 should be a code number. But your
idea about coding things as exponents really was a good one, and we can
save it if we just agree that whenever we wish to code a finite sequence of
numbers ay, as,...,ar, we will use the exponents a; + 1,a2+1,...,ar + 1,
which takes care of those pesky 0’s. Furthermore, when we decode we will
automatically subtract one from every exponent, so you’ll never have to
think about it. (Hey, that’s why we, the authors, are paid the big bucks!)

The idea here is that a sequence of k£ natural numbers should be coded
by a product of the first k£ primes raised to non-zero powers. So the empty
sequence will, naturally, be coded by a product of the first O primes raised
to some power. In other words, the code of the empty sequence will be the
number 1. Let us make this more formal:

Definition 4.5.1. The function p is the function mapping the natural
numbers to the natural numbers, where p(0) = 1 and p(k) is the k™ prime
for k > 1. Thus p(0) = 1, p(1) = 2, p(2) = 3, and so on. We will often
write p; instead of p(7).

Definition 4.5.2. Let N<N denote the set of finite sequences of natural
numbers.

Definition 4.5.3. We define the coding function (-) : NN — N by

1 if k=0
T, p2™ itk >0

%

{((a1,a9,...,a)) = {

where p; is the ith prime number.

We will write (a1, aq,...,ar) rather than ((a1,as,...,ax)).

It would be pointless to be able to code up sequences without being
able to decode them, and the next functions that we define will let us do
that. But before getting there, we need to acknowledge that we will be
depending on the Fundamental Theorem of Arithmetic, which states that
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every positive integer greater than one can be expressed in exactly one way
(up to order) as a product of primes. The proof of this theorem (first proven
by Euclid) is nontrivial and beyond the scope of this book, but is certainly
worth looking up. But we will happily remember that the theorem is true,
and use it freely.

There is, however, a messy detail with which we have to deal, and we
might as well deal with it now.

Our decoding functions will have to be total functions, by which we
mean that each of the functions will have domain N. But lots of natural
numbers are not the code of sequences, and we have to figure out how
to deal with such numbers. To make the definitions that are coming up
reasonable, and to save us more difficulties later, we start by defining the
set of numbers that are codes.

Definition 4.5.4. Let C ={a € N| (3s € NN) a = (s)}. We will call C
the set of code numbers.

Notice that it is easy to check whether or not a € C. All we need to do
is factor a and see if either a = 1 or if a is a product of the first few primes.
Now we can get along to uncoding:

Definition 4.5.5. The function |-|: N — N is defined by

lal k ifaeC and a={ay,as,...,ax)
a|l =
0 otherwise.

If a is a code number, we will say that |a| is the length of a.

Chaff: Ok, where did we use the Fundamental Theorem of
Arithmetic?

Notice that we have defined the function |-| in such a way that its domain
is the entire set of natural numbers. Since lots of natural numbers will not
be codes of finite sequences, we have had to make a choice about how we
would define our length function on those numbers. So, by definition, if a
is any number that is not of the form p§**'pg2*t . pt*F! then |a| = 0.
But we will not talk about the length of such a number.

Please be careful about the difference between |a| and |(a)|. See Exercise

2

Definition 4.5.6. For each i € N with ¢ > 1, let (-); be the function with
domain N and codomain N defined by

(@) {ai if a € C and a = (a1,as,...,a;) and 1 <i <k
a); =

0 otherwise.
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The skeptical (and sharp-eyed) reader will have noticed another little
detail here. Consider the number ¢ = 10. We have agreed that 10 does
not code up a sequence, and thus Definition tells us that [10] = 0.
However, if we use our decoding function that we have just defined, maybe
looking for the seventh term of the sequence, and we plug in the input
10, we find (10)7 = 0. This is slightly annoying, since the casual observer
might think that 10 is supposed to code a sequence of length 0, but beyond
aggravating the authors, this side effect will not bother us at all.

We will also need to be able to put the codes of two sequences together,
one after the other, and the next function allows us to do so.

Definition 4.5.7. The function = : N x N — N is defined by

(ar,...,ak,by,...,b) ifa={a,...,ar) and b= (by,...,b),

b= with (ai,...,a;) € NN and
- (by,...,b) € NN
0 otherwise.

It might be worthwhile to work through an example at this point. Sup-
pose we wished to compute 7938007 73500. We would first do a lot of
factoring to find that 793800 = 23345272, so 793800 = (2,3,1,1). Similarly,
73500 = (1,0,2,1). So, by definition

793800773500 = (2,3,1,1,1,0,2,1) = 233527211%13'173192
= 2214592288108200,

while 793801773500 = 0.

The functions introduced above allow us to code finite sequences and,
given a code number a, decode it. In other words, if a € C and a =
(a1, ...,ag), then for each i such that 1 <i <|al, (a); = a;.

At this point, we have built all of the coding apparatus that we will
need. Whether we approach incompleteness through formulas or through
computations, we will be able to code and decode the objects and sequences
of the objects. We have built the infrastructure. In Chapters [5] and [6] we
will apply the coding to formulas, while in Chapter [7] we use the coding on
computations. Both routes lead us to incompleteness.

4.5.1 Exercises

1. Compute the following:
(a) (3,0,4,2,1)
(b) (16910355000)3

)

)
(c) [16910355000]
(d) (16910355000) 42
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(e) (2,7,1,8)7(2,8,1)
(f) 17742

2. Find a number a such that |a| # |(a)| or prove that no such a exists.
Then find a number b such that |b| = |(b)| or prove that no such b exists.

4.6 An Old Friend

Back in Example we introduced the collection of nonlogical axioms
N. Just because they are so important, we’ll reprint them here:

The Axioms of N

1. (Va)=Sz =0

2. (Vz)(¥y)[Sz = Sy — = = ]

3. (Va)z+0=2x

4. (Va)(Vy)z + Sy = S(z + ).

5. (Va)z-0=0

6. (Vx)(Vy)z - Sy = (x-y) + @

7. (Vz)zE0 = S0

8. (Vz)(Vy)zE(Sy) = (vEy) - x

9. (Vz)—z <0
10. (Vz)(Vy)[z < Sy« (z <yVa =y)].
11 (Vo)(Vy)[(z <y) V(z =y) V (y < z)].

At that time (Lemma we proved some things about the strength
of this innocuous-looking set of axioms, for example, if the natural number
a is equal to the sum b+ ¢, then N @ = b+ ¢ We will need some further
results about the strength of IV that will be proven in detail in Chapter
We state them here and give some examples.

Recall that we have defined the collections of A-formulas as the formulas
in the language of number theory that contain no unbounded quantifiers.
For a specific example, consider ¢(z), the formula with one free variable

Pplz)=Fy<z)2y=12

which states that z is an even number. Suppose that we consider two
different sentences associated with ¢: ¢(2) and ¢(3). We will all agree that
#(2) is a true statement about N, while ¢(3) is false. What is so wonderful
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about our set of non-logical axioms N is that N is strong enough to prove
the first statement and refute the second:

N ¢(2) N F=¢(3)

This is a general fact about the relation between A-formulas and NV,
which we will state here and prove as Proposition [5.3.14

Proposition 4.6.1. If ¢(z) is a A-formula with free variables z, if t are
variable-free terms, and if M = ¢(t), then N+ ¢(t). If, on the other hand,

N = —o(t), then N F —p(t).

If we allow an unbounded existential quantifier, the situation changes
slightly. Our set of axioms N is strong enough to prove the true -
sentences, but it cannot refute the false Y-sentences. This result, called
Y.-completeness, will be proven as Proposition [5.3.1

Proposition 4.6.2. If ¢(z) is a X-formula with free variables x, if t are
variable-free terms, and if M |= ¢(t), then N = ¢(t).

At one level, this should not be too surprising, given that N is strong
enough to prove or refute sentences that have no unbounded quantifiers.
Suppose that ¢ is a true Y-sentence. Then ¢ looks (roughly) like Jaep(z),
where 1 has one free variable. Since Jzi(x) is true in 91, then there is
some natural number k such that (k) is true. But then (k) is a true-
in-9 sentence with no unbounded quantifiers. By assumption, N is strong
enough to prove v (k), and so by the usual rules of logic, N also proves
Jzep(x); ie., N proves ¢.

On the other hand, if our Y-sentence ¢ is false in 91, that just means
that there is no natural number k such that (k) is true. Now, since 1 (k)
has no unbounded quantifiers, by assumption that means that N ﬁw(E)
for every natural number k. But we have already seen that there are lots
of structures of non-standard arithmetic where a property can be false of
every natural number but still true of some other element of the universe.
So just because N can prove that v is false of every natural number, there
is no reason a priori to assume that N can then prove that 1 is false of
everything. And in fact, it cannot.

So, the short version:

N is strong enough to prove true »-sentences, but not
strong enough to refute false X-sentences.

Equivalently, since the denial of a X-sentence is equivalent to a II-
sentence:

N is strong enough to prove every true Y-sentence, but
not strong enough to prove every true Il-sentence.
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For example, consider the Goldbach Conjecture, which states that every
even number greater than two can be written as the sum of two primes. It
is not difficult to see that the Goldbach Conjecture can be written formally
as a II-sentence, but unfortunately we currently do not know whether the
Goldbach Conjecture is true or not. Suppose for a second that the conjec-
ture was false. Then its denial, equivalent to a Y-sentence, would be true,
and therefore N would be able to prove the denial. Not surprising, really.
All we would have to do is find an even number that is a counterexample
to the Goldbach Conjecture and check that it isn’t the sum of two primes.
(Warning: If you're going to start looking for the counterexample, go big
or go home. The conjecture has been verified for all even numbers up to at
least 4 x 10'8.)

On the other hand, if the Goldbach Conjecture is true, then there is no
reason to believe that N is strong enough to prove that fact. Which, by the
way, means that if we could prove that N is not strong enough to decide
the Goldbach Conjecture, then the Goldbach Conjecture is true!

4.7 Summing Up, Looking Ahead

The big concepts that we have introduced in this chapter are three. First
is coding, both the idea behind it and the mechanism that we will use
to accomplish it. Secondly, we have defined what it means to talk about
the complexity of a formula, and introduced the collections of -, II-, and
A-formulas. Then, we reintroduced the collection of axioms N, and we
mentioned (but did not prove) that N is X-complete; N is strong enough
to prove all ¥-sentences that are true in 9.

Before us we have the path to Gédel’s Incompleteness Theorem. But we
should say “paths” rather than path. You, the reader, get to choose what
happens next. If you would like to see a development of incompleteness
that is based on formulas in £y, then continue on into Chapter @ If,
on the other hand, you are more interested in an argument that focuses on
computations rather than formulas, skip Chapters[5|and [6]for now and move
on to Chapter |7l Of course, on a second reading you should look over (at
least briefly) the material that you skipped; there are insights and subtleties
to be appreciated in each approach! We will bring things back together in
Chapter [§ and point you toward further reading in Mathematical Logic
that will introduce you to further results and other areas of study in this
fascinating field. But first, on to Incompleteness!






Chapter 5

Syntactic
Incompleteness—
Groundwork

5.1 Introduction

There is a fair bit of groundwork to cover before we get to the Incomplete-
ness Theorem, and much of that groundwork is rather technical. Here is
a thumbnail sketch of our plan to reach the theorem: The proof of the
First Incompleteness Theorem essentially consists of constructing a certain
sentence # and noticing that 6 is, by its very nature, a true statement in 91
and a statement that is unprovable from our axioms. So the groundwork
consists of making sure that this yet-to-be-constructed 6 exists and does
what it is supposed to do. In this chapter we will specify our language and
reintroduce N, a set of nonlogical axioms. The axioms of N will be true
sentences in 1. We will show that IV, although very weak, is strong enough
to prove some crucial results. We will then show that our language is rich
enough to express several ideas that will be crucial in the construction of
0.

In Chapter [0 we will prove Gédel’s Self-Reference Lemma and use that
lemma to construct the sentence 6. We shall then state and prove the
First Incompleteness Theorem, that there can be no decidable, consistent,
complete set of axioms for 91. We will finish the chapter with a discussion of
Godel’s Second Incompleteness Theorem, which shows that no reasonably
strong set of axioms can ever hope to prove its own consistency.

117
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5.2 The Language, the Structure,
and the Axioms of N

We work in the language of number theory
»CNT = {Oa Sa +, - E» <}7

and we will continue to work in this language for the next two chapters. 91
is the standard model of the natural numbers,

m = (N707S7+7'7E7<>7

where the functions and relations are the standard functions and relations
on the natural numbers.

We will now establish a set of nonlogical axioms, N. You will notice that
the axioms are clearly sentences that are true in the standard structure, and
thus if T is any set of axioms such that T F o for all o such that N = o,
then T+ N. So, as we prove that several sorts of formulas are derivable
from N, remember that those same formulas are also derivable from any set
of axioms that has any hope of providing an axiomatization of the natural
numbers.

The axiom system N was introduced in Example[2.8:3]and is reproduced
on the next page. These 11 axioms establish some of the basic facts about
the successor function, addition, multiplication, exponentiation, and the <
ordering on the natural numbers.

Chaff: To be honest, the symbol E and the axioms about
exponentiation are not needed here. It is possible to do ev-
erything that we do in the next couple of chapters by defining
exponentiation in terms of multiplication, and introducing F
as an abbreviation in the language. This has the advantage of
showing more explicitly how little you need to prove the incom-
pleteness theorems, but adds some complications to the expo-
sition. We have decided to introduce exponentiation explicitly
and add a couple of axioms, which will allow us to move a little
more cleanly through the proofs of our theorems.



5.3. Representable Sets and Functions 119

The Axioms of N

1. (Va)-Sz = 0.

2. (Va)(¥y)[Sz = Sy — z = 1]

3. (Vo)z+0=2

4. (Vz)(Vy)z + Sy = S(x +y).

5. (Va)z-0=0

6. (Vo)(Vy)z - Sy = (z-y) +a

7. (Va)zE0 = SO

8. (Vz)(Vy)zE(Sy) = (xEy) -«

9. (Vz)-z <0
10. (Vo)(Vy)[z < Sy« (z <yVa=y)].
11 (Vo) (Vy)[(z <y) V(z=y) V (y < z)].

5.2.1 Exercises

1.

You have already seen that N is not strong enough to prove the com-
mutative law of addition (Exercise [8|in Section [2.8.1]). Use this to show
that N is not complete by showing that

NV (Vx)(Vy)x+y=y+=x

and
Nt =[(Vo)(Vy)z +y =y + z].

Suppose that ¥ provides an axiomatization of Th(9t). Suppose o is a
formula such that N F o. Show that ¥ o.

Suppose that 2 is a nonstandard model of arithmetic. If Th(2) is the
collection of sentences that are true in 2, is Th(2() complete? Does
Th(2A) provide an axiomatization of 91?7 Of A?

5.3 Representable Sets and Functions

For the sake of discussion, suppose that we let f(z) = x2. It will not surprise
you to find out that f(4) = 16, so we would like to write 91 |= f(4) = 16.
Unfortunately, we are not allowed to do this, since the symbol f, not to
mention 4 and 16, are not part of the language.
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What we can do, however, is to represent the function f by a formula
in Ly7. To be specific, suppose that ¢(x,y) is

y = ExS5S50.

Then, if we allow ourselves once again to use the abbreviation @ for the
Ly7-term SSS---50, we can assert that
—

aS’s
N |- 6(1,T6)
which is the same thing as

N == 5955555555555SSS0ESSSS0SS0.

(Aren’t you glad we don’t use the official language very often?) Anyway,
the situation is even better than this, for ¢(4, 16) is derivable from N rather
than just true in M. In fact, if you look back at Lemma [2.8.4] you probably
won’t have any trouble believing the following statements:

e N+ ¢(4,16)
o N F—¢(4,17)
o N —¢(1,714)

In fact, this formula ¢ is such, and N is such, that if a is any natural
number and b = f(a), then

N}—Vy[gb(ﬁ,y) Hy:ﬂ.

We will say that the formula ¢ represents the function f in the theory
N.

Definition 5.3.1. A set A C NF is said to be representable (in N) if
there is an £yp-formula ¢(z) such that

Vae A NF¢a)

Vg A NF 6D

In this case we will say that the formula ¢ represents the set A.

Definition 5.3.2. A set A C N* is said to be weakly representable (in
N) if there is an £Lyp-formula ¢(z) such that
Vae A NFo¢a)

WEA NV

In this case we will say that the formula ¢ weakly represents the set A.
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Notice that if A is representable, then A is weakly representable. On a
few occasions we will talk about a set being representable in T', where T is
a different set of £yp-formulas. This just means that all of the deductions
mentioned in the previous two definitions should be deductions-from-T’,
rather than deductions-from-N.

Chaff: A bit of notation has slipped in here. Rather than
writing x1, x2, ..., x; over and over and over again in the next
few sections, we will abbreviate this as g. Similarly, T is short-
hand for =71, T3,...,Tg. If you want, you can just assume that
there is only one x—it won’t make any difference to the expo-
sition.

We will also discuss representable functions, and this brings up a couple
of subtle points that need to be addressed. The general idea is that a
function f : N¥ — N should be representable if N is able to prove that a
formula that represents the function does the right thing, but historically
the term weakly representable has been applied to functions whose domains
are (possibly strict) subsets of N¥, which adds some complexity.

To begin with, we will need to be able to talk about the domains of
functions with a little more precision.

Definition 5.3.3. Suppose that A C N* and suppose that f : A — N. If
A = NF¥ we will say that f is a total function. If A C N*, we will call f a
partial function.

Now we can define what it means for a function to be representable or
weakly representable.

Definition 5.3.4. Suppose that f : N¥ — N is a total function. We will
say that f is a representable function (in ) if there is an £y7 formula
¢(x1,...,xp41) such that, for all a1, as,...ap41 €N,

If f(ala . '7ak) = Qk+1, then N ¢(a717 '7ak+1)
It f(ar,.., ax) # axs1, then N F ~(ar, ..., @),

Notice that a total function is a representable function if and only if it
is a representable subset of N*+1. See Exercise

Definition 5.3.5. Suppose that A C N*¥ and f : A — N is a (possibly)
partial function. We will say that f is a weakly representable func-
tion (in N) if there is an Lyp formula ¢(z1,...,zk+1) such that, for all
a1,0a9,...0k41 € N,

If f(ar,...,ax) = axs1, then N - g(ar, .., ar7)
If flar,. .. ax) # axs1, then N i 6(@T, .., @71)-
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Chaff: 1In the definition above, notice that if, for example,
5 is not an element of the domain of the unary function f,
then f(5) is not going to be equal to anything, so we know
that f(5) # 17. All we ask, in that case, is that N does not
prove ¢(5,17). We do not need, and cannot expect, N to prove

=¢(5,17).

How important is it to know whether a function is total or not? With
regards to representability, the big result is the following, the proof of which
is omitted.

Proposition 5.3.6. Suppose that f is a total function from N¥ to N. Then
f is representable if and only if f is weakly representable.

Partial functions will be very important to us as we work through Chap-
ter [7] but for the next couple of chapters, almost all of our functions will
be total. If f is representable, we can say a little more about what N can
prove about f.

Proposition 5.3.7. Suppose that f : N* — N is a total function. Then
the following are equivalent.

1. f is a representable function.

2. There exists an Lnr-formula(x1, ..., Tpq1) such that for alla € NF,
Nty [v@y) <y = @]
Proof. Exercise [0 provides an outline of a proof. O

Chaff:

What’s in a name? that which we call a rose
By any other name would smell as sweet;
So Romeo would, were he not Romeo call’d,
Retain that dear perfection which he owes
Without that title.
—Romeo and Juliet, Act II, Scene ii

In computer science courses, in many mathematical logic
texts, and in fact in Chapter [7]of this book, a different approach
is taken when representable sets and functions are introduced.
Starting with certain initial functions, the idea of recursion, and
an object called the p-operator, a collection of partial functions
is defined such that each function in the collection is effectively
calculable. This is called the collection of computable functions,
which leads to something called decidable (or computable) sets.
Then these texts prove that the collection of representable sets
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that we just defined is the same as the collection of decidable
sets. Thus we all end up at the same place, with nicely defined
collection of sets and functions, that we call computable. Or
representable. Or recursive. So if you are confused by the dif-
ferent definitions, just remember that they all define the same
concept, and remember that the objects that are recursive (or
representable or computable) are (in some sense) the simple
ones, the ones where membership can be proved in N.

To be fair, it is not quite as simple as Juliet makes it out
to be. (It never is, is it?) The path that we have taken to
representable sets is clean and direct but emphasizes the deduc-
tions over the functions. The approach through initial functions
stresses the fact that everything that we discuss can be calcu-
lated, and that viewpoint gives a natural tie between the logic
that we have been discussing and its applications to computer
science. For more on this connection, see Section [5.4]and Chap-

ter [7

Definition 5.3.8. We will say that a set A C N* is definable if there is a
formula ¢(z) such that

Vae A Nk 9@

g A NE o).

In this case, we will say that ¢ defines the set A.

Chaff: 1t is very important to notice the difference between
saying that ¢ represents A and ¢ defines A, which is the same
as the difference between N + and 9 . Notice that any rep-
resentable set must be definable and is defined by any formula
that represents it. The converse, however, is not automatic.
In fact, the converse is not true. But we're getting ahead of
ourselves.

We have mentioned several times that the axiom system N is relatively
weak. We will show in this section that N is strong enough to prove some of
the Ly formulas that are true in 9, namely the class of true X-sentences.
And this will allow us to show that if a set A has a relatively simple defi-
nition, then the set A will be representable.

Recall from Chapter (4] that a formula is a A-formula if it contains only
bounded quantifiers. Slightly more complicated are the -formulas, which
can contain bounded quantifiers and unbounded existential quantifiers, and
II-formulas, which can use both bounded quantifiers and unbounded uni-
versal quantifiers.
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Example 5.3.9. Here is a perfectly nice example of a A-formula ¢: (Vo <
t)(z = 0). Notice that the denial of ¢ is not a A-formula, as ~(Vz < t)(x =
0) is neither a 3- nor a II-formula. But a chain of logical equivalences shows
us that —¢ is equivalent to a A-formula if we just push the negation sign
inside the quantifier:

¢
(Ve < t)(x =0)
(Fz < t)-(z=0).

Similarly, we can show that any propositional combination (using A, V, =,
—, <) of A-formulas is equivalent to a A-formula. We will use this fact
approximately 215,342 times in the remainder of this book.

A Y-sentence is, of course, a X-formula that is also a sentence. We will
be particularly interested in X-formulas and A-formulas, for we will show
if ¢ is a Y-sentence and N = ¢, then the axiom set N is strong enough to
provide a deduction of ¢. Since every A-sentence is also a Y.-sentence, any
A-sentence that is true in 91 is also provable from N.

The first lemma that we will prove shows that N is strong enough to
prove that 1 4+ 1 = 2. Actually, we already know this since it was proved
back in Lemma[2.8.4] We now expand that result and show that if ¢ is any
variable-free term, then N proves that ¢ is equal to what it is supposed to
be equal to.

Recall that if ¢ is a term, then t” is the interpretation of that term in
the structure 91. For example, suppose that ¢ is the term £5550550, also
known as SSS095°. Then ¢ would be the number 9, and ¢ would be the
term SSS5S5555550. So when this lemma says that N proves t = t”, you
should think that N proves SSS0%% = §555555550, which is the same

as saying that N - 3 =9
Lemma 5.3.10. For each variable-free term t, N -t = .

Proof. We proceed by induction on the complexity of the term ¢. If ¢ is the
term 0, then t™ is the natural number 0, and t” is the term 0. Thus we
have to prove that N = 0 = 0, which is an immediate consequence of our
logical axioms. L

If t is S(u), where u is a variable-free term, then the term ¢t is identical
to the term S(u™). Also, N - u = u™, by the inductive hypothesis, and
thus N F Su = S(u”), thanks to the equality axiom (E2). Putting all of
this together, we get that N ¢ = Su = S(u”) = t™, as needed.

If t is u + v, we recall that Lemma lm proved that N F ¢ + 0™ =
uM+ 9%, But then N Ft=u+v =u"M+ 0N = o2 + 0" = 9N which is
what we needed to show. The arguments for terms of the form u - v or u"
are similar, so the proof is complete. O
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The next lemma and its corollary will be used in our proof that true
Y.-sentences are provable from V.

Lemma 5.3.11 (Rosser’s Lemma). If a is a natural number,
NEWVz<a)|lve=0vVa=1V---Voz=a—1].

Proof. We use induction on a. If a = 0, it suffices to prove that N - Vz[z <
0 —1]. By Axiom 9 of N, we know that N - =(z < 0),so N F (z < 0) =L,
as needed.

For the inductive step, suppose that a = b+ 1. We will be finished if
we can show that

NEvVz[z<b+1—2z=0V---Vz=0|.
Since b+ 1 and Sb are identical, it suffices to show that
NFVJ:[J:<§—>$:6\/~~'\/I:H.

By Axiom 10, we know that N -z < Sb — (v < bV x = b), and then by
the inductive hypothesis, we are finished. O

Corollary 5.3.12. If a is a natural number, then
N F [(Vx < E)qb(x)] & [(i)(ﬁ) ANG(L)A -+ Agla— 1)]
Proof. Exercise O

Now we come to the major result of this section, that our axiom system
is strong enough to prove all true Y-sentences.

Proposition 5.3.13. If ¢(z) is a E-formula with free variables x, if t are
variable-free terms, and if M |= ¢(t), then N F ¢(t).

Proof. This is a proof by induction on the complexity of the formula ¢.

1. If ¢ is atomic, say for example that ¢ is < y and terms ¢ and
u are such that 9t =t < u. Then t” < v”, so by Lemma
N F % < 4™ But we also know N+t =t" and N F v = u™, by
Lemma [5.3.10] so N ¢ < u, as needed.

2. Negations of atomic formulas are handled in the same manner.
3. f pis aV B or aA B, the argument is left to the Exercises.

4. Suppose that 9t = Jzyp(z), where we assume that ¢ has only one free
variable for simplicity. Then there is a natural number a such that
N E (@), and thus N F ¢(a) by the inductive hypothesis. But then
our second quantifier axiom tells us, as @ is substitutable for x in ¥,
that N 3z, as needed.
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5. Now if N = (Vo < w)ip(x), we know by the inductive hypothesis that
NF [$0) ApTD) A A —1)].
But then by Corollary
N F (Yo < u™)p(z).
Thus, since N - u® = u, N+ (V& < u)tp(x), as needed.
Thus if 0N = ¢(£), then N - ¢(t). 0

We will say that ¢ is provable (from N) if N F ¢. And we shall say
that ¢ is refutable if N F —¢.

Suppose that ¢ is a A-sentence. If N |= ¢, since we know that ¢ is also
a Y-sentence, Proposition shows that IV - ¢. But suppose that ¢ is
false; that is, suppose that 91 = ¢. Then M | —¢, and —¢ is equivalent to
a A-sentence. Thus by the same argument as above, N F —¢. So we have
proved the following:

Proposition 5.3.14. If ¢(z) is a A-formula with free variables x, if t are
variable-free terms, and if M= ¢(t), then N+ ¢(t). If, on the other hand,
N = —¢(t), then N F —p(t).

Corollary 5.3.15. Suppose that A C N* is defined by a A-formula ¢(z).
Then A is representable.

Proof. This is immediate from Proposition [5.3.14 and Definition [5.3.1] O

The astute and careful reader will have noticed that Corollary
is an implication and not a biconditional. So the corollary provides us
with a useful and convenient way of guaranteeing that a particular set is
representable, and we will avail ourselves of that guarantee frequently. The
seat-of-the-pants version of the corollary is that a set with a very simple
definition is representable. Although we won’t be able to prove it until later
(Lemma there is a result that is a nod in the direction of a converse:

Proposition 5.3.16. Suppose that A C N¥ is representable. Then there is
a X-formula that defines A.

Reading carefully, you are certainly thinking that there must be some
representable sets that, although they are Y-definable, do not have a A-
definition (if there weren’t any, certainly we would have proven that fact
in the Corollary above, right?). You are correct, and we will return to this
question in the next section. For now, we’ll be happy with some practice in
defining some sets with A-formulas, and thus establishing that those sets
are representable. Doing this will keep us busy for much of the rest of this
chapter.
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Example 5.3.17. Suppose that we look at the even numbers. You might
want to define this set by the £yp-formula

() is: (Fy)(z =y +vy).

But we can, in fact, do even better than this. We can define the set of
evens by a A-formula

Even(zx) is:
By <z)(xz=y+y)

So now we have a A-definition of EVEN, the set of even numbers. (We
will try to be consistent and use SMALL CAPITALS when referring to a
set of numbers and Italics when referring to the £yp-formula that defines
that set.) So by Corollary we see that the set of even numbers is a
representable subset of the natural numbers.

Over the next few sections we will be doing a lot of this. We will look
at a set of numbers and prove that it is representable by producing a A-
definition of the set. In many cases, the tricks that we will use to produce
the bounds on the quantifiers will be quite impressive.

Chaff: For the rest of this chapter you will see lots of for-
mulas with boxes around them. The idea is that every time we
introduce a A-definition of a set of numbers, there will be a box
around it to set it off.

Example 5.3.18. Take a minute and write , a A-definition of
PRIME, the set of prime numbers. Once you have done that, here is a
definition of the set of prime pairs, the set of pairs of numbers x and y such
that both z and y are prime, and y is the next prime after x:

Primepair(x,y) is:

Prime(z) A Prime(y) A (z < y) A [(Vz < y)(Prime(z) — z < z)].

Notice that Primepair has two free variables, as PRIMEPAIR C N2, while
your formula Prime has exactly one free variable. Also notice that all of
the quantifiers in each definition are bounded, so we know the definitions
are A-definitions.

Chaff: We also hope that you noticed that in the definition
of Primepair we used your formula Prime, and we did not try
to insert your entire formula every time we needed it— we just
wrote Prime(x) or Prime(y). As you work out the many defini-
tions to follow, it will be essential for you to do the same. Freely
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use previously defined formulas and plug them in by using their
names. To do otherwise is to doom yourself to unending streams
of unintelligible symbols. This stuff gets dense enough as it is.
You do not need to make things any harder than they are.

5.3.1 Exercises

1.

Show that the set {17} is representable by finding a A-formula that
defines the set. Can you come up with a (probably silly) non-A formula
that defines the same set?

Suppose that A C N is representable and represented by the formula
¢(x). Suppose also that B C N is representable and represented by
¥(x). Show that the following sets are also representable, and find a
formula that represents each:

(a) AUB
(b) ANB
(c) The complement of A, {xr e N|x & A}

Show that every finite subset of the natural numbers is representable
and that every subset of N whose complement is finite is also repre-
sentable.

Suppose that f : N¥ — N is a total function. Show that f is a repre-
sentable function if and only if f is a representable subset of N*+1,

Let A C N. Define the characteristic function of A, x4 : N = N by

(@) 0 ifzecA
xTr) =
X4 1 ifegA

Show that A is a representable subset of N if and only if x 4 is a repre-
sentable function.

Let p(z) be a polynomial with nonnegative integer coefficients. Show
that the set {a € N | p(a) = 0} is representable. After you prove this
the obvious way, find a slick way to write the proof. (Or, if you were
slick the first time through, find the prosaic way!)

Write a A-definition for the set DIVIDES. So you must come up with a
formula with two free variables, | Divides(z,y) |, which has the property

that M = Divides(a, b) if and only if a is a factor of b.

Show that the set {1,2,4,8,16,...} of powers of 2 is representable.
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10.

11.
12.

13.

14.

Suppose that you know that ¢(x,y) represents the total function f :
N — N. Show that ¥(z,y) := ¢(z,y) A (V2 < y)(—d(x, z)) also repre-
sents f, and furthermore, for each a € N,

N F (V) (@@, y) < y = f(a)).

[Suggestion: After you show that v represents f, the second part is
equivalent to showing N F #(a, f(a)), which is pretty trivial, and then
proving that

N [(6(a,y) A (V2 < y)(~d(x, 2))) = y = [(a)] .

So, take as hypotheses N, ¢(a,y), and (Vz < y)(—¢(z,2)) and show
that there is a deduction of both —[f(a) < y] and =[y < f(a)|]. Then
the last of the axioms of N will give you what you need. For the details,
see [Enderton 72, Theorem 33K].]

In the last inductive step of the proof of Lemma [5.3.10, the use of
the inductive hypothesis is rather hidden. Please expose the use of
the inductive hypothesis and write out that step of the proof more
completely. Finish the cases for multiplication and exponentiation.

Prove Corollary [5.3:12

Fill in the details of the steps omitted in the inductive proof of Propo-
sition In the last two cases, how does the argument change if
there are more free variables? If, for example, instead of ¢ being of the
form Jzyp(z), ¢ is of the form Jx)(x,y), does that change the proof?

We will say that a formula ¢(z) with one free variable is positively
numeralwise determined if, for each a € N, if 91 |= ¢(a) then N F
¢(@). Say ¢(z) is numeralwise determined if both ¢(z) and —¢(x)
are positively numeralwise determined. Prove that ¢ represents a set A
if and only if ¢ defines A and ¢ is numeralwise determined. To reiterate,
a set A is representable if and only if A has a numeralwise determined
definition.

Show that every atomic formula is numeralwise determined. Then show
that the collection of numeralwise determined formulas is closed under
=, V, A and bounded quantification.

5.4 Representable Functions and Computer

Programs

In this section we shall investigate the relationship between representable
functions and computer programs. Our discussion will be rather informal
and will rely on your intuition about computers and calculations.
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One of the reasons that we must be rather informal when discussing
computation is that the idea of a calculation is rather vague. In the mid-
1930s many mathematicians developed theoretical constructs that tried to
capture the idea of a calculable function. Kurt Gédel’s recursive functions
(now often called computable functions), the Turing Machines of Alan Tur-
ing, and Alonzo Church’s A-calculus are three of the best-known models of
computability.

One of the reasons that mathematicians accept these formal constructs
as accurately modeling the intuitive notion of calculability is that all of the
formal analogs of computation that have been proposed have been proved
to be equivalent, and each of them is also equivalent to the notion of rep-
resentability that we defined in the last section. Thus it is known that a
function is Turing computable if and only if it is general recursive if and
only if it is A-computable. It is also known that these formal notions are
equivalent to the idea of a function being computable on a computer, where
we will say that a function f is computable on an idealized computer if there
is a computer program P such that if the program P is run with input n,
the program will cause the computer to output f(n) and halt.

Thus the situation is like this: On one hand, we have an intuitive idea
of what it means for a function to be effectively calculable. On the other
hand, we have a slew of formal models of computation, each of which is
known to be equivalent to all of the others:

’ Intuitive Notion H Formal Models

Representable function
Computable function

Calculable function A-Computable function
Turing-computable function

Computer-computable function

So why do we say that the idea of a calculation is vague? Although all of
the current definitions are equivalent, for all we know there might be a new
definition of calculation that you will come up with tonight over a beer.
That new definition will be intuitively correct, in the sense that people
who hear your definition agree that it is the “right” definition of what it
means for a person to compute something, but your definition may well
not be equivalent to the current definitions. This will be an earthshaking
development and will give logicians and computer scientists plenty to think
about for years to come.

You will go down in history as a brilliant person

with great insight into the workings of the human
mind!
You will win lots of awards and be rich and famous!
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All right, we admit it. Not rich. Just famous.

OK. Maybe not famous. But at least well known in logic and computer science circles.

But until you have that beer we will have to go with the current sit-
uation, where we have several equivalent definitions that seem to fit our
current understanding of the word computation. So our idea of what con-
stitutes a computation is imprecise, even though there is precision in the
sense that lots of people have thought about what the definition ought to
be, and every definition that has been proposed so far has been proved (pre-
cisely) to be equivalent to every other definition that has been proposed.

Church’s Thesis is simply an expression of the belief that the formal
models of computation accurately represent the intuitive idea of a calculable
function. We will state the thesis in terms of representability, as we have
been working with representable functions and representable sets.

Church’s Thesis. A total function f is calculable if and only if f is rep-
resentable.

Now it is important to understand that Church’s Thesis is a “thesis” as
opposed to a “theorem” and that it will never be a theorem. As an attempt
to link an intuitive notion (calculability) and a formal notion (representabil-
ity) it is not the sort of thing that could ever be proved. Proofs require
formal definitions, and if we write down a formal definition of calculable
function, we will have subverted the meaning of the thesis.

To add another layer to this discussion, consider the function f that
assigns to each natural number its natural number square root, if it has
one. We will say that f(n) is not defined if n is not a square. So f(9) =3
and f(10) is not defined. This partial function seems to be calculable, and
in fact here is some pseudo-code that would compute the output values for

f:

n <- input
i<-0
(x) if( i"2 == n){
output ("The square root of ", n, " is ", 1)

halt

}
i<- i+l
go to (%)

To be a little more precise, we will say that a partial function f : A C
N — N is calculable if there is an algorithm or computation that, given
input n € N, does exactly one of the following:

e If f(n) is defined, the algorithm computes the correct value of f(n),
outputs f(n) and then halts;
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e If f(n) is not defined, the algorithm runs forever without halting.

So if the function f is total and calculable, there is an algorithm which will
compute f(n) for any input n, but if g is partial and calculable, then g¢’s
algorithm will halt when g(n) is defined, but will run forever if g(n) is not
defined.

We will say that a set S C N is calculable if its characteristic function,
Xs, is calculable. (See Exercise |5 on page for the definition of xg.)

Since the study of computation leads rather naturally to the investiga-
tion of partial functions, Church’s Thesis is often stated in terms of partial
functions:

Church’s Thesis. A partial function f is calculable if and only if f is
weakly representable.

The tie between the two versions of Church’s Thesis lies in Proposition
Using that proposition, it is easy to see that the total function version
of Church’s Thesis follows immediately from the partial function version.

For an example of the sort of question that can be addressed by thinking
about calculable sets and functions, consider the following:

The class of calculable subsets of N can be extended by looking at the
collection of sets such that there is a computer program which will tell you
if a number is an element of the set, but does not have to do anything at all
if the number is not an element of the set. Informally, a set A C N is said
to semi-calculable if there is a computer program P such that if a € A,
program P returns 0 on input a, and if a ¢ A, program P does not halt
when given input a. You can check that this is equivalent to saying that
the partial function x4 : A — N that takes on the value 0 for every element
of its domain is calculable.

If we accept Church’s Thesis, it is easy to argue that set A is repre-
sentable if and only if both A and N — A are semi-calculable, as you are
asked to do in Exercise[6} Other exercises provide a little more practice in
working with semi-calculable sets.

The study of computable functions is an important area of mathematical
logic, and emphasizes the tie between logic and computer science. Chapter
[7 is devoted to presenting an introduction to computable functions that
leads to a proof of Godel’s Incompleteness Theorem. In this setting, the
statement of the Incompleteness Theorem amounts to the statement that
the collection of sentences that are provable-from-Y, where ¥ is an extension
of N that is decidable and true-in-91, is a semi-computable set that is not
computable. Thus there is a significant difference between the collection
of computable sets and the collection of semi-computable sets. Another
text that emphasizes computability in its treatment of Godel’s Theorem is
[Keisler and Robbin 96].

So is Church’s Thesis true? We can say that all of the evidence to date
seems to suggest that Church’s Thesis is true, but we are afraid that is
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all the certainty that we can have on that point. We have over 70 years’
experience since the statement of the thesis, and over 3000 years since we
started computing functions, but that only counts as anecdotal evidence.
Even so, most, if not all, of the mathematical community accepts the iden-
tification of “computable” with “representable” and thus the community
accepts Church’s Thesis as an article of faith.

5.4.1 Exercises

1. We defined calculable functions and semi-calculable sets in this section,
but the definitions are not set off in their own block and given fancy
numbers, like “Definition 5.4.2.” Why didn’t we make the definitions
official-looking like that?

2. Using Church’s Thesis, show that A C N is calculable if and only if A
is representable. Then show that A is semi-calculable if and only if A
is weakly representable.

3. (a) Show that A C N is semi-calculable if and only if A is listable,
where a set is listable if there is a computer program L such that
L prints out, in some order or another, the elements of A.

(b) Show A C N is calculable if and only if A is listable in increasing
order.

4. Suppose that A C N is infinite and semi-calculable and show that there
is an infinite set B C A such that B is calculable.

5. Show that A C N is semi-calculable if and only if there is a Y-formula
¢(x) such that ¢ defines A.

6. Use Church’s Thesis to show that a set A is representable if and only
if both A and N — A are semi-calculable. [Suggestion: First assume
that A is representable. This direction is easy. For the other direction,
the assumption guarantees the existence of two programs. Think about
writing a new program that runs these two programs in tandem—first
you run one program for a minute, then you run the second program
for a minute. ...]

5.5 Coding—Naively

If you know a child of a certain age, you have undoubtedly run across coded
messages of the form

114 11616125 1 4125

where letters are coded by numbers associated with their place in the al-
phabet. If we ignore the spaces above, we can think of the phrase as being



134 Chapter 5. Syntactic Incompleteness—Groundwork

coded by a single number, and that number can have special properties.
For example, the code above is not prime and it is divisible by exactly five
distinct primes. If we like, we could say that the coding allows us to assert
the same statements about the phrase that has been coded. For example,
if we take the phrase

The code for this phrase is even

and coded it as a number, you might notice that the code ends in 4, so you
might be tempted to say that the phrase was correct in what it asserts.

What we are doing here is representing English statements as numbers,
and investigating the properties of the numbers. We can do the same thing
with statements of Ly7. For example, if we take the sentence

=050,
we could perhaps code this sentence as the number
1042492561137562500000000,

and then we can assert things about the number associated with the string.
For example, the code for = 050 is an element of the set of numbers that
are divisible by 10, and it is in the set of numbers that are larger than the
national debt. What will make all of this interesting is that we can ask if
the code for = 050 is an element of the set of all codes of sentences that can
be deduced from N. Then we will be asking if our sentence is a theorem of
N. If it is, then we will know that N is inconsistent. If it is not, then NV is
consistent. Thus we will have reduced the question of consistency of N to
a question about numbers and sets!

This is the insight that led Godel to the Incompleteness Theorem. Given
any reasonable set of axioms A, Godel showed a way to code the phrase

This phrase is not a theorem of A

as a sentence of Ly and prove that this sentence cannot be in the collection
of sentences that are provable from A. So he found a sentence that was
true, but not provable. We will, in this chapter and the next, do the same
thing.

But first, we will have to establish our coding mechanism. In this section
we will not develop our official coding, but rather, a simplified version to
give you a taste of the things to come. Let us describe the system we used
for the example above.

We started by assigning symbol numbers to the symbols of Lyr, as
given in Table Notice that the symbol numbers are only assigned for
the official elements of the language, so if you need to use any abbreviations,
such as — or 3, you will have to write them out in terms of their definitions.

Then we had to figure out a way to code up sequences of symbols. The
idea here is pretty simple, as we will just take the symbol numbers and
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Symbol | Symbol Number || Symbol | Symbol Number

= 1 + 13
\% 3 - 15
v 5 E 17
= 7 < 19
0 9 ( 21
S 11 ) 23

(3 21

Table 5.1: Symbol Numbers for £y

code them using the scheme that we outlined in Section For example,
if we look at the expression
=050

the sequence of symbol numbers this generates is
(7,9,11,9),

so the code for the sequence would be (remember that we add one to the
exponent when we code sequences of numbers)

28310512710
which is also known as
1042492561137562500000000,

the example that we looked at earlier.

Notice that our coding is effective, in the sense that it is easy, given a
number, to find its factorization and thus to find the string that is coded
by the number.

Chaff: The word easy is used here in its mathematical sense,
not in its computer science sense. In reality it can take unbe-
lievably long to factor many numbers, especially numbers of the
size that we will discuss.

Now, the problem with all of this is not that you would find it difficult
to recognize code numbers, or to decode a given number, or anything like
that. Rather, what turns out to be tricky is to show that N, our collection
of axioms, is strong enough to be able to prove true assertions about the
numbers. For example, we would like NV to be able to show that the term

1042492561137562500000000

represents a number that is the code for an Lyr-sentence. The details
of showing that N has this strength will occupy us for the next several
sections.
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5.5.1 Exercises
1. Decode the message that begins this section.

2. Code up the following L yp-formulas using the method described in this
section and in Section

)
b) == EvlSvg . E’Ul’Ugvl
(c) (=00V (- < 00))
(d) (Fua)(< v20)
3. Find the Lyp-formula that is represented by the following numbers. A
calculator (or a computer algebra system) will be helpful. Write your

answer in a form that normal people can understand—mnormal people
with some familiarity with first-order logic and mathematics, that is.

(a) 773190132422400000000000000
(b) 29986008216169640502067200000000
(c) 2223657724112213817719102324

5.6 Coding Is Representable

A basic part of our coding mechanism will be the ability to code finite
sequences of numbers as a single number. A number c¢ is going to be a code
for a sequence of numbers (k1, ko, ..., ky) if and only if

e = (ki k... ky) = 2R3kt it
where p,, is the nth prime number.

Chaff: Be careful with the notation here. The sequence of
numbers is enclosed by parentheses, while the (-) denotes the
coding function introduced back in Chapter [4]

We show now that N is strong enough to recognize code numbers. In
other words, we want to establish

Proposition 5.6.1. The collection of numbers that are codes for finite
sequences is a representable set.

Proof. 1t is easy to write a A-definition for the set of code numbers:

Codenumber(c) is:
Divides(S50,¢) A (Vz < ¢)(Vy < 2)

{(Prime(z) A Divides(z,c) A Primepair(y, z)) — Divides(y, c)}
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Notice that Codenumber(c) is a formula with one free variable, c. If you
look at it carefully, all the formula says is that c is divisible by 2 and if
any prime divides ¢, so do all the earlier primes. Since the definition above
is a A-definition, Corollary [5.3.15]tells us that the set CODENUMBER is a
representable set. O

Since CODENUMBER is representable and Codenumber is a A-formula,
we now know (for example) that

N + Codenumber(18)

and

N F =Codenumber(45).

Now, suppose that we wanted to take a code number, ¢, and decode it.
To find the third element of the sequence of numbers coded by ¢, we need
to find the exponent of the third prime number. Thus, for N to be able
to prove statements about the sequence coded by a number, N will need
to be able to recognize the function that takes i and assigns it to the ‘P
prime number, p;. Proving that this function p is representable is our next
major goal.

Proposition 5.6.2. The function p that enumerates the primes is a rep-
resentable function.

Proof. We start by constructing a measure of the primes. A number a will
be in the set YARDSTICK if and only if a is of the form 2'3252...p;* for
some i. So the first few elements of the set are {2,18, 2250, 5402250, ... }.

Yardstick(a) is:
Codenumber(a)A
Divides(S50, a) A = Divides(S55550, a)A
(Vy < a)(Vz < a)(Vk < a)

[(Divid@s(z, a) A Primepair(y, z)) —

(Divides(y", a) <> Divides(z°F, a))} .

If we unravel this, all we have is that 2 divides a, 4 does not divide a,
and if z is a prime number such that z divides a, then the power of z that
goes into a is one more than the power of the previous prime that goes into
a.

Now it is relatively easy to provide a A-definition of the function p:
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IthPrime(i, y) is:
Prime(y)A
(Ja < (y")") [ Yardstick(a) A Divides(y', a) A - Divides(y*, a)].

Notice the tricky bound on the quantifier! Here is the thinking behind
that bound: If y is, in fact, the i*" prime, then here is an a € YARDSTICK
that shows this fact: a = 2'3%---y’. But then certainly a is less than or
equal to y'y" - --y*, and so a < (y*)*. This bound is, of course, much larger

—
7 terms
than a (the lone exception being when ¢ = 1 and y = 2), but we will only
be interested in the existence of bounds, and will pay almost no attention
to making the bounds precise in any sense. O

Chaff: There is a bit of tension over notation that needs
to be mentioned here. Suppose that we wished to discuss the
seventeenth prime number, which happens to be 59, and that y
is supposed to be equal to 59. The obvious way to assert this
would be to state that y = py7, but we will tend to use the
explicit £yp-formula IthPrime(17,y). Our choice will give us
a great increase in consistency, as our formulas become rather
more complicated over the rest of this chapter. We will tend
to write all of our functions in this consistent, if not exactly
intuitive manner.

Now we can use the function IthPrime to find each element coded by a
number:

IthElement(e, i, c) is:
Codenumber(c) A (Jy < ¢)(IthPrime(i,y)A
Divides(y>¢, ¢) A = Divides(y°°¢, ¢)).

So intuitively, IthElement(e, i, c) is true if ¢ is a code and e is the number
at position i of the sequence coded by c.
The length of the sequence coded by c is also easily found:

Length(c,1) is:

Codenumber(c) A (3y < ¢) | (IthPrime(l,y) A Divides(y, ¢)

A (Vz < ¢)[PrimePair(y, z) — —Divides(z,c)])|.
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All this says is that if the I*® prime divides ¢ and the (I + 1)** prime
does not divide ¢, then the length of the sequence coded by c is .

5.6.1 Exercise

1. Decide if the following statements are true or false as statements about
the natural numbers. Justify your answers.

(a) (5,13) € ITHPRIME
(b) (1200, 3) € LENGTH

(c) IthElement(1,2,3630) (Why are there those lines over the num-
bers?)

5.7 Godel Numbering

We now change our focus from looking at functions and relations on the
natural numbers, where it makes sense to talk about representable sets,
to functions mapping strings of £y7-symbols to N. We will establish our
coding system for formulas, associating to each Lyp-formula ¢ its Godel
number, "¢7. We will make great use of the coding function (-) that we
defined in Definition 5.3l

Definition 5.7.1. The function " ", with domain the collection of finite
strings of £ yp-symbols and codomain N, is defined as follows:

(1,"a™ if s is (—a), where « is an £yp-formula

(3, '—a" '—6—‘) if s is (aV ), where o and S are Lyp-formulas
(5,7
(7, "tl—', Tto)  if s is = t1t9, where t; and to are terms
(9) if sis 0

(11,7 if s is St, with ¢ a term
<1 rtl‘l l‘t2‘|
<15 I’tl‘l Ft2‘|

(

(

(

o) if sis (Vv;)(«), where « is an £ yp-formula

’_S—l —
if s is +t1ty, where t; and ¢y are terms

if s is -t1to, where t; and to are terms
17,717, Tty
19,7¢1 7, Tty

27) if s is the variable v;

if s is Etyty, where t; and to are terms

)
)
)
) if sis < tyto, where t; and t9 are terms

3 otherwise.

Notice that each symbol is associated with its symbol number, as set
out in Table 5.1l



140 Chapter 5. Syntactic Incompleteness—Groundwork

Example 5.7.2. Just for practice, let’s find "07. Just from the chart above,
07 = (9) = 210 = 1024. To look at another example, look at "0 = 07
Working recursively,

r— 00_\ — <7, I_O_\’ I_O—I>
= (7,1024,1024)
— 283102551025

Exercise [3] asks you to investigate some of the subtleties of coding as it
relates to this last example.

Example 5.7.3. This is a neat function, but the numbers involved get
really big, really fast. Suppose that we work out the Gédel number for the
formula ¢, where ¢ is (— = 050).

Since ¢ is a denial, the definition tells us that

TTis (1,7 = 0807) = 223" =050 +1
So we need to find "= 0507, and by the “equals” clause in the definition,
r=08071s (7,707,7S07) = 2837015750+

But 707 = 2'9 = 1024, and TS0 = 212370+l = 21231025 Now we're
getting somewhere. Plugging things back in, we get

F= 0507 is 283102552737 +1]

so the Go6del number for (- = 050) is

. 28310255[21231025+1]+1)
T¢lis 223( .

Chaff: To get an idea about how large this number is,

consider the fact that the exponent on the 5is "S07 = 21231025 1.
1, which is

4588239037329654294933009459423640636113835
33711852348723982661700090725110495540711416
24496800232720851201851240219667428400380468
28472630247645228844759293716788206726298594
57606066116964029586110650008838161967674248
714876110453564150536269711030213614452805279
213722748800276796114884183810302573694405480
301945785627339339194850085383681785222504546
327111992210992776215014423059901287305704225
3643605726211189929819826835540873386794064170
563975508362231081323849454313910276632860438529,
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approximately 10499,

Now, let us play a bit with the Gédel number of ¢:
'_QS—' 223(28310255[21231025+1]+1)
510490)

so if we take common logarithms, we see that
log("¢™) > 510*] log 3
and taking logarithms again,
log(log("¢™)) > 10*° log 5 + log(log 3)
> 10489,

Hmm. ... So this means that log("¢) is bigger than 10110*1,
But the common logarithm of a number is (approximately) the
number of digits that it takes to express the number in base
10 notation, so we have shown that it takes more than 10[10"’]
digits to write out the Godel number of ¢. If you remember that
a googol is 10'°° and a googolplex is 1010100, "¢ is starting to
look like a pretty big number, but it gets better!

To write out a string of 1000"*] characters (assuming a mil-
lion characters per mile, or about 16 characters per inch) would
require far more than 10110*%) miles, which is far more than
10010"7] Jight years.

Or, to look at it another way, if we assume that we can put
about 132 lines of type on an 8%— by 11-inch piece of paper

(using both sides), that works out to about 10110"*°] pieces of
paper, and since a ream of paper (500 sheets) is about 2 inches
thick, that gives a stack of paper more than 1020%] light years
high. Since the age of the universe is currently estimated to be
in the tens of billions of years (on the order of 10'° years), if we
assume that the universe is both Euclidean and spherical, the
volume of the universe is less than 10*° cubic light years, rather
less than the 1010**") cubic light years we would need to store
our stack of paper. In short, we don’t win any prizes for being
incredibly efficient with the coding that we have chosen. What
we do win is ease of analysis. The fact that we have chosen
to code using a representable function will make our proofs to
come much easier to comprehend.

5.7.1 Exercises

1.

Evaluate the Godel number for each of the following:

141
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(a) (Yv3)(v3 + 0 = v4)
(b) $5550
2. Find the formula or term that is coded by each of the following;:
(a) 283 [2143(2183951025+1) 5(21833351025+1) +1] 5 [218312951025+1]

5 (91251025
920310255 (2123 +1)+1)

(b) 223(
() 96395 (273757 +1)

3. Look at the number ¢ = 283102551025 — (7 77 707). Find the number
e such that IthElement(e,2,c) is true. Suppose that d = (3,1,4,5) =
24325576, Why is IthElement(4,1,d) false?

5.8 Godel Numbers and N

Suppose we asked you if the number

a = 35845617479137924179164136401747192469639
33857123846474406114544531958789925746411
80793941381251818131650014462814216151784
3779724084'7442423809728350349681982162407
86504920777012547391538781481141489453194
04814037245506808496961291846992606460711
74235438629125412438572089750021624696475
32686017988856987542814858951450213588587
45976629206001394705081676818056243914838
10641798001801554788070758142606590669736
02492132671739715266307333432862633253105
8659079930322842573861827424036194222176
000000000

was the Goédel number of an £yp-term. How would you go about finding
out? A reasonable approach would be to factor a and try to decode. It turns
out that a = 243192559 and since 1024 = 2'° = 707 and 8 = 23 = "o, 7,
you know that a is the Godel number of the term +0v;. That was easy.

What makes this more interesting is that the above is so easy that N
can prove that a is the Godel number of a term. Establishing this fact is
the goal of this section.

We will show how to construct certain A-formulas, for example the
formula Term(x), such that for every natural number a, M = Term(a) if
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and only if a is the Gédel number of a term. Since our formula will be a
A-formula, this tells us that N = Term(a) if a is the Godel number of a
term, and N F = Term(a) if a is not the Gédel number of a term.

The problem is going to be in writing down the formula. As you look
at the definition of the function ™-7 in Definition you can see that
the definition is by recursion, and we will need a way to deal with recursive
definitions within the constraints of A-definitions. We would like to be able
to write something like

Term(z) is: -+ V 3y < 2)[z = 2"13Y A Term(y)] V- -,

but this definition is clearly circular. A technical trick will get us past this
point.

But we should start at the beginning. You know that the collection
of Lyp-terms is the closure of the set of variables and the collection of
constant symbols under the function symbols. We will begin by showing
that the collection of Gédel numbers of variables is representable.

Lemma 5.8.1. The set
VARIABLE = {a € N | a = "0 for some variable v}

is representable.

Proof. 1t suffices to provide a A-definition for VARIABLE:

Variable(x) is:

(3y < z)(Even(y) A0 < y A x = 25Y).

Notice that we use the fact that if z = 25, then y < . It is easy to see
that 91 = Variable(a) if and only if @ € VARIABLE, so our formula shows
that VARIABLE is a representable set. O]

To motivate our development of the formula Term, consider the term ¢,
where t is +0Sv;. We are used to recognizing that this is a term by looking
at it from the outside in: ¢ is a term, as it is the sum of two terms. Now
we need to start looking at ¢ from the inside out: t is a term, as there is a
sequence of terms, each of which is either a constant symbol, a variable, or
constructed from earlier entries in the sequence by application of a function
symbol of the appropriate arity. Here is a construction sequence for our
term ¢:

(Ul, Svl, 0, +OS’01)

From this construction sequence we can look at the associated sequence of



144 Chapter 5. Syntactic Incompleteness—Groundwork

Godel numbers:

(Tv1 7,7 S0, 707, T+0Sv, ) = ((2), (1 :

(2),(11,8),(9), (13,1024, (11,70, 7))

(2),(11,8),(9), (13,1024, (11,8)))

(2), (11, 8), (9), (13,1024, 2'23°)))
212397 1024, 21431025580621569)

, 80621568, 1024, a)

L™, (9), (13,707, "S5v1 )

A~ N~~~

= (8,
8

where the large number a is the Godel number of the term +0Sv;. Now
we can code up this sequence of Gédel numbers as a single number

c= 29 38062156951025 7a+1 .

Now we can begin to see what our formula Term(a) is going to look like.
We will know that a is the Godel number of a term if there is a number ¢
that is the code for a construction sequence for a term, and the last term
in that construction sequence has Goédel number a. To formalize all this,
let us begin by defining the collection of construction sequences:

Definition 5.8.2. A finite sequence of £Lyp-terms (t1,ts,...,t;) is called
a term construction sequence for ¢; if, for each ¢, 1 < i <[, ¢; is either
a variable, the constant symbol 0, or is one of t;, St;, +t;tx, - tti, or Bt iy,
where j < ¢ and k < 4.

Proposition 5.8.3. The set

TERMCONSTRUCTIONSEQUENCE =
{(c,a) | ¢ codes a term construction sequence

for the term with Goédel number a}

is representable.

Proof. Here is a A-definition for the set:
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TermConstructionSequence(c, a) is:
CodeNumber(c)A

F <o) [Length(c, 1) A IthElement(a,l, c)\
(Ve < ¢)(Vi <) <IthElement(e,z', c) —

Variable(e) V e = 2%
(Fj < 1)(Fk < i)(Fe; < c)(Fex < ¢)
(IthElement (e;, j, c) A IthElement(ey, k, c)A

ﬁ 75‘6]‘

[e:ej\/ezi 2377V

e=3"°.3% 5% v e =2".3% ~536'“D)]'

This just says that (¢,a) € TERMCONSTRUCTIONSEQUENCE if and only
if ¢ is a code of length [, a is the last number of the sequence coded by c,
and if e is an entry at position 4 of ¢, then e is either the Godel number
of a variable, the Gédel number of 0, a repeat of an earlier entry, or is the
Godel number that is the result of applying S, +, -, or E to earlier entries
in c. As all of the quantifiers are bounded, this is a A-definition, so the set
TERMCONSTRUCTIONSEQUENCE is representable. O

Now it would seem that to define Term(a), all we would have to do
is to say that a is the Godel number of a term if there is a number ¢
such that TermConstructionSequence(c,a). This is not quite enough, as
the quantifier 3¢ is not bounded. In order to write down a A-definition
of Term, we will have to get a handle on how large codes for construction
sequences have to be.

Lemma 5.8.4. If t is an Lyr-term and "t = a, then the number of
symbols in t is less than a.

Proof. The proof is by induction on the complexity of t. Just to give you
an idea of how true the lemma is, consider the example of ¢, where ¢ is SO.
Then ¢ has two symbols, while "t7 = ¢ = 21231925 which is just a little
bigger than 2. O

Lemma 5.8.5. Ift is a term, the length of the shortest construction se-
quence of t is less than or equal to the number of symbols in t.

Proof. Again, use induction on the complexity of ¢. O

These lemmas tell us that if a is the Godel number of a term, then there
is a construction sequence of that term whose length is less than a.
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Lemma 5.8.6. Suppose that t is an Lyr-term, u is a subterm of t. (In
other words, u is a substring of t, w is also an Lyr-term, and w is not
identical to t.) Then "u™ < Tt™.

Proof. Exercise O

Lemma 5.8.7. If a is a natural number greater than or equal to 1, then
Pa < 2% where p, is the ath prime number.

Proof. Exercise O

Now we have enough to give us our bound on the code for the shortest
construction sequence for a term t with Gédel number "¢t = a. Any such
construction sequence must look like

(t1;t27' .- atk = t),
where k < a and each t; is a subterm of ¢. But then the code for this
construction sequence is
c= <rtl—|7 I—tQ—l; R ,_tj>

— 2rt17+13rt2—'+1 . 'p;t—'-‘rl

S 2a+13a+1 . .pz—i-l
a+1_a+1 a+1
< Py Pr D
k terms
a+1l, a+1 a+1
S pa o .. .pa
a terms

[T
e

which gives us our needed bound.
We are finally at a position where we can give a A-definition of the
collection of Gédel numbers of £y7-terms:

Term(a) is:

___a a§+a
(Hc < (2a ) ) TermConstructionSequence(c, a).

So the set
TERM = {a € N | a is the G6del number of an £yp-term}

is a representable set, and thus IV has the strength to prove, for any number
a, either Term (@) or —Term(a). In Exercise [6| we will ask you to show that
the set FORMULA is also representable.
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5.8.1 Exercises

1.

Assume that ¢ is a formula of Lyr. Which of the following are also
Ln7-formulas? For the ones that are not formulas, why are they not
formulas?

e Term(¢)
o Term("¢™)
° Term(?)

Suppose that in the definition of TermConstructionSequence, you saw
the following string:

ooV e=211.3¢ ...

Would that be a part of a legal £ yp-formula? How do you know? What
if the string were

Prove Lemma [5.8.4
Prove Lemma [5.8.6]

Prove Lemma [5.8.7 by induction. For the inductive step, if you are
trying to prove that p,+1 < 2(n+1)" " , use the fact that p,y; is less
than or equal to the smallest prime factor of (pips---pn) — 1.

A proof similar to the proof that TERM is representable will show that
ForMULA = {a € N | a is the Gidel number of an £ yp-formula}

is also representable. Carefully supply the needed details and define the

formula | Formula(f) | You will probably have to define the formula

FormulaConstructionSequence(c, f) and estimate the length of such se-
quences as part of your exposition.

5.9 NuMm and SuB Are Representable

In our proof of the Self-Reference Lemma in Section [6.2] we will have to be
able to substitute the Gédel number of a formula into a formula. To do this
it will be necessary to know that a couple of functions are representable, and
in this section we outline how to construct A-definitions of those functions.
First we work with the function Num.

Recall that @ is the numeral representing the number a. Thus, 2 is S.S0.

Since S50 is an Lyp-term, it has a Gédel number, in this case

FSS07 = (11,7507 = (11,21231025) — 91232"3"% 41,
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The function Num that we seek will map 2 to the Goédel number of its
L nr-numeral, 2123273 +1 g6 Num(a) = "a".

To write a A-definition Num(a,y) we will start, once again, with a
construction sequence, but this time we will construct the numeral @ using
a particular term construction sequence. To give an example, consider the
case a = 2. We will use the easiest construction sequence that we can think
of, namely

(0, S0, $50),

which gives rise to the sequence of Gédel numbers
(07,7507, 75507) = (1024, 21231025 912327375 +1)
which is coded by the number

o= 2[1025}3[21231025+1]5[212321231025+1+1].

Notice that the length of the construction sequence here is 3, and in
general the construction sequence will have length a + 1 if we seek to code
the construction of the Gddel number of the numeral associated with the
number a. (That is a very long sentence, but it does make sense if you
work through it carefully.)

You are asked in Exercise [I] to write down the formula

’ NumConstructionSequence(c, a, y) ‘

as a A-formula. The idea is that
N E NumConstructionSequence(c, a, y)

if and only if ¢ is the code for a construction sequence of length a 4+ 1 with
last element y ="a™.

Now we would like to define the formula Num(a,y) in such a way that
Num(a,y) is true if and only if y is "@", and as in Section the formula
(3¢) NumConstructionSequence(c, a,y) does not work, as the quantifier is
unbounded. So we must find a bound for c.

If (¢, a,y) € NUMCON