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How-To-Do-It

The Analysis of Leaf Shape Using Fractal
Geometry
Gregg Hartvigsen

We often begin studying biological
systems, such as molecules, organisms,
or even aggregations of organisms in
groups, by trying to describe their
structure. Structure, or more simply,
shape, is often used to describe differ-
ences between species. Shape also
strongly influences function (e.g. the
shape of a male moth’s antennae
greatly influences his ability to detect
the pheromones of females that may
be miles away [see Vogel 1988]). The
shapes of objects and organisms tradi-
tionally have been described using
Euclidean geometry. This type of
geometry is the basis of what we are
all familiar with from high school,
and leads to simple shapes like lines,
squares, circles and cubes. These struc-
tures also define our traditional sense
of dimensions in space (e.g. a line
is one-dimensional, a square is two-
dimensional, etc.). Organisms, how-
ever, rarely fit these simple shapes
and, instead, are a very complex com-
bination of these forms or usually
something altogether different. Try, for
example, to think of the shape of a
human as made up of spheres, right
prisms and cylinders. The person is
likely to look silly.

Size also is an important structural
component of objects. For organisms,
size, by definition, changes during
growth and development. Shape, on
the other hand, may or may not
change. Imagine, for example, what
an adult human would look like if
she were to retain the same size rela-
tionship between head and body from
birth to adulthood. Things that do not
change shape, or relative sizes of parts
as they grow, are referred to as being
isometric. When shape does change as
a function of size we refer to these
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objects as having an allometric scaling
relationship. We would like to know
how to describe the shapes of organ-
isms and how shape changes.

The list of Euclidean shapes does
not get us very far, even when we try
to describe something simple like a
leaf (Figure 1). You could describe this
leaf as being similar to an oval or
square, but that is clearly inadequate
if we are interested in details about the
leaf. You could attempt a complicated

Figure 1. Norway maple leaf (Acer platanoides). Determining the shape of a simple
maple leaf using Euclidean geometry is difficult, although we can easily tell this
differs from an oak leaf.

description using many triangles, for
instance, but that would be both diffi-
cult and of dubious value. With leaves
we may think about the amount of
area the leaf covers, but this takes
the interesting shape of the leaf and
converts it into a Euclidean shape. The
leaf in Figure 1 might have an area
of 9 cm2, but this implies the leaf has
dimensions of 3 x 3 cm, which is a
square. If I have another 9 cm2 leaf,
does it look the same or could it be



completely different looking? The lat-
ter leaf might be from a different spe-
cies and be full of holes due to an
attack by a herbivore. If shape influ-
ences function then simplifying a leaf
to its area, measured perhaps in square
units, is likely to overlook something
very important. This exercise describes
a relatively simple, quantitative approach
to measure the shape of complicated but
real structures. How shape relates to
function is an excellent question for fur-
ther discussion but is beyond the scope
of this article.

Here is another example of the prob-
lems we have when we try to measure
the shapes of things. Think about mea-
suring the length of the East Coast
of the United States (see Mandelbrot
1977). If you measure the linear dis-
tance from the eastern tip of Maine
down to southern Florida, you will
find a distance of about 1200 miles.
What we have done is to take a 1200-
mile-long straight ruler, lay it down,
and determine that the coast is about
1200 miles long. Now, if you tried to
hike along the coast you would find
that you would have to walk quite a
bit further. Why? You can’t walk in
a straight line! If you used a 20-meter
ruler to measure the twists and turns
of the East Coast, you would estimate
the coast to be about 5,000 miles, not
1200 miles. But your 20-meter ruler is
still pretty unwieldy. If you used a 1-
meter ruler (one stride) you may find
the East Coast is on the order of 25,000
miles long. That’s about equal to the
circumference of the Earth (assuming
the Earth is a sphere, which, by the
way, it is not). So, what is the actual
length of the East Coast? Well, it turns
out that there isn’t one answer because
the answer is scale-dependent. The
length depends on the length of
your ruler.

We call irregular shapes, such as
a coast line, fractals. Students from
elementary school through college
should be able to think of such exam-
ples because most things in nature
are fractal, and they are not easily
described using the simple shapes of
Euclidean geometry.

To understand fractal geometry,
however, we have to first review some
Euclidean geometry. In Euclidean
geometry we talk about dimensions.
There are four that should be familiar.
The first three are a line (one dimen-
sion: length), a flat surface such as a
square (two dimensions: length and
width), and solids such as cubes (three
dimensions: length, width and height).
Students are usually familiar with time
as the fourth dimension.
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In this traditional sense trees are
generally three-dimensional objects
while leaves are two-dimensional.
Let’s simplify dimensions by using the
letter D. To determine length (1-D),
area (2-D), or volume (3-D), we can
use a simple formula. Let us start with
a line two units long (Figure 2a), and
we will define s as the length of a
unit on our ruler so that total length
4 sD. If s 4 2 and D 4 1, then length
4 sD 4 21 4 2.

Two-dimensional objects such as
squares have D 4 2 (Figure 2b). If
we again let s 4 length of a unit on
a side, then we can find the area of
a square with our formula such that
area 4 sD 4 22 4 4. We can make
a cube the same way (Figure 2c). Then
volume 4 sD 4 234 8. This gentle
introduction, as I have found, has been
well received by both freshmen and
seniors at the college level and is fun-
damental in understanding the differ-

Figure 2. Euclidean geometric shapes with s 4 2. The measurements of length (a),
area (b), and volume (c) of these shapes can be determined using the equation sD

where s is the length of one side unit and D is the standard, Euclidean dimension.

ence between Euclidean geometry and
fractal geometry.

In the above examples we calculated
the length of a 1-D line, the area of
a 2-D surface, and the volume of a 3-
D solid. The objects, however, all had
straight-line sides. But organisms
rarely have such simple forms. We
could try to find the area of an irregu-
larly shaped leaf, for example, by
counting the number of 2-D squares
that the leaf covers on a piece of graph
paper, but the answer we would get
would depend on the sizes of the
squares on the graph paper, just like
the answer for the length of the East
Coast depends on the size of a ruler.
The area of leaves is important to
individual plants but says nothing
about the actual shape of the leaf,
which is more likely to influence func-
tion, such as the movement of materi-
als into and out of leaves.



We now can turn to fractal geometry
to help understand the simple ques-
tion, what is the shape of leaves? We
use the same D as before for dimen-
sion, but now let D vary continuously
rather than restrict it to integers or
whole numbers. If we take a straight
line, for example, we can measure its
length using standard Euclidean
geometry, which tells us both its shape
and length. But if we begin to bend
the line just a little bit we immediately
lose our ability to describe the line’s
shape. Fractal geometry enables us to
assign a quantitative measure of our
line’s new shape. The line now may
have the same length as before but its
dimension (fractal D) increases, say to
1.1. If the line is really curvy, it will
begin to fill flat space, becoming more
like a surface. If it kept twisting and
turning, eventually it would fill a sur-
face completely and have a D 4 2.
Now, if the line that filled a surface
began to move outward from the sur-
face toward you, making what we
recognize as the beginning of a 3-D
structure, the fractal D will increase
beyond 2 toward 3. The continuous
nature of fractal dimensions, therefore,
reveals interesting information about
the shape of objects. Determining the
shape of objects like leaves turns out
to be quite simple and relies on a few
very useful and powerful quantitative
tools. I use this exercise also to introduce
the scientific method to my students.

Method for Determining
Fractal Dimension
A. A Fun Assignment for

Students To Complete at
Home

I ask my students to do this simple
exercise before the laboratory exercise.
I ask the students to measure the frac-
tal dimensions of their hands held in
two different positions. Students must
be supplied with three scaled pieces
of graph paper where sides of the little
boxes are 0.25, 0.5 and 1.0 inches (the
use of English or Metric Units is of
no concern because fractals are scale
independent). Students should set up
a data table with six columns following
Table 1. The value s equals the length
of a side of one small box (or square)
on the different pieces of graph paper
and ln stands for the natural logarithm
(base e). Use a calculator or computer
(e.g. using Excel) to obtain logarithms.

Students measure the number of
boxes when the hand is closed and
when it is open (Figure 3a & 3b) on
each of the three types of graph paper.
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Table 1. Sample data for the hands depicted in Figure 3a and 3b. The heading
values are s, the length of the side of one box on the graph paper (e.g. 1 for one
inch), and 1n stands for natural logarithm. Fractal dimension D is the slope of
the line of the 1n (number of boxes, either closed or open hands) on the y-axis
versus 1n (1/s) on the x-axis. For the closed hand data D 4 1.65 for the open
hand data. The interpretation is that the closed hand more fully fills space than
the open hand.

In (number In (number
Number of Boxes of boxes, Number of boxes of boxes,

s In(1/s) (closed hand) closed hand) (open hand) open hand)

1.0 0.00 34 1.53 46 1.66

0.5 0.30 116 2.06 146 2.16

0.25 0.60 383 2.58 445 2.65

Fractal dimension D is calculated using
the box-count method (see Peitgen et
al. 1992; Hastings & Sugihara 1993).
Each student should place his/her
hand anywhere on each piece of graph
paper and lightly trace the outline of
that hand with a pencil. Next students
must count all the boxes inside the
traced area and count all the boxes
that have any part of a line in them,
as well. The number of boxes counted
should be recorded in the column
‘‘number of boxes: closed hand’’ for
each size of graph paper (length ‘‘s’’).
After counting boxes, the faint lines
of the closed hands should be erased
and the same method applied to open
hands, recording these data in the col-
umn ‘‘number of boxes: open hand.’’

The shape of a closed hand is differ-
ent from the shape of an open hand,
although the area is not different. The
fractal dimension (D) will show the
difference, if calculated correctly. Frac-
tal D is estimated using a graphical
method. Using the ‘‘closed hand’’ data,
graph ‘‘ln (number of boxes: closed
hand)’’ on the y-axis and ‘‘ln(1/s)’’ on
the x-axis. There should be three points
that form two lines. The fractal dimen-
sion (D) is simply the slope of the
best-fit line through the three points
(the three points should fall approxi-
mately on the same line). To estimate
this slope students should calculate
the average of the slopes for the two
separate lines (students should be able
to calculate the slope by hand by divid-
ing the change in y by the change in
x). Follow the same method for data
collected from the open hand measure-
ments. The fractal D estimates should
be different, with the closed hand hav-
ing a higher value than data from the
open hand.

I like to ask my students if, after
seeing the differences in D for open
and closed hands, they are convinced
that their hands really changed shape.

This might lead into a discussion on
replication. Critically thinking students
should realize the flaw of a sample
size of one and realize that they cannot
say anything about hands in general
from simply measuring their own
hands. This might lead to an important
activity where students combine data
from their group or the entire class.
Employing a relatively simple t-test
would be helpful to resolve whether
open and closed hands have statisti-
cally different shapes.

B. In the Class or Laboratory
The lab should begin with the dis-

cussion about the change in shape of
their hands when open and closed.
Leaves also are different and can be
quite variable, even within plants. This
is clearly seen (Figure 4) in the biennial
wild carrot or Queen Anne’s lace (Dau-
cus carota), a common weedy species
that has an extensive range throughout
North America and Eurasia.

Students test the null hypothesis that
leaf shape, as measured by fractal
dimension D, does not change along
the vertical stem of D. carota. I help
my students develop this hypothesis,
and then encourage them to put forth
alternative hypotheses. I collected 10
plants and mounted the leaves in
ascending order on herbarium paper
(Figure 4). This could easily be part
of the lab, although having the leaves
pressed and on hand allows the mea-
surements to be made within an hour,
depending on the number of leaves
you choose to collect from each plant.
I have used just the top and bottom
leaves and found the relationship to be
strong and rewarding for the students.
For upper division college students, I
like to have them do multiple leaves
and look at the relationship of fractal
D along the stem of plants rather than
just the top and bottom of the plant.



Figure 3. The author’s hand in closed (a) and open (b) positions.

To test the null hypothesis I provide
the same graph paper reproduced on
clear overheads so that the graph
paper can overlay the leaf specimens
for counting. I also use an additional
smal ler scale (0 .125 inches ) for
increased resolution of D on the more
divided leaves. The data can be ana-
lyzed rapidly in a spreadsheet such
as Excel. Having students prepare data
sheets before lab is helpful and similar
to the data sheet used for the hand
shapes. The data sheets should have
columns for ‘‘plant #,’’ ‘‘leaf #’’ (from
(the top of the plant), ‘‘s’’ and ‘‘#
boxes.’’ The leaf at the top of the plant
should be labeled #1 (Figure 4). When
the data are entered into the spread-
sheet it will be easy to create the
columns for 1/s and the logarithms
[e.g. ‘‘4ln(1/A2)’’ for the ln(1/s)].

Counting Boxes
Students will need to count boxes.

This time you should have them use
four graph paper sizes (i.e. sides of
length 1.0, 0.5, 0.25 and 0.125 inches).
Randomly place the graph paper
labeled ‘‘s 4 1.0’’ over the leaf being
measured and count the number of
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boxes that the leaf occupies. Be sure
to count boxes that contain even the
smallest amount of leaf edge. Do this
twice, again placing the graph paper
randomly on each specimen. For each
of the four graph papers, average the
two counts. Record the average in your
data table for each leaf. Repeat the
above for each leaf, recording the leaf
and plant number.

There are two approaches for ana-
lyzing these data. Either way, how-
ever, students should be required to
generate a graph of the ln(number of
boxes counted) vs. ln(1/s) for each leaf
(four data points should be generated
per leaf for each size of graph paper
used). For ln(1/s) you should use the
natural logarithm and be careful to
take the inverse before logging the
value. The slope of this line equals
the fractal D for that leaf. You may
have students either average the three
individual slopes, similar to the tech-
nique suggested for estimating the
slope with the hand data, or you may
have the students enter the data into
a calculator or computer and use a
standard spreadsheet application.

You may want to ask students
whether the points lie on a straight

line. If they do not, you may generate
some discussion as to why not (vari-
ability due to sampling error or there
may exist a real change across the
scale measured). You also may want
to discuss the relationship (either lin-
ear or non-linear) between fractal D
and leaf position (Figure 5).

A final statistical test may be per-
formed using an analysis of variance
(ANOVA), such as is shown in Figure
5. The mean fractal dimension (D) is
shown along the vertical stem with
95% confidence error bars representing
variability about the means. The infer-
ence that can be drawn from this anal-
ysis is that the mean fractal D, or
shape of the leaves, changes along the
vertical stem of D. carota.

The Meaning of Fractals in
Biology

Our understanding of the shape of
structures, organisms and even com-
munities in biology is surprisingly lim-
ited. This is quite amazing considering,
for example, that we generally con-
sider an organism’s structural anatomy
well before we investigate function.



Figure 4. Scanned image of an herbarium sheet with five pressed leaves of Queen
Anne’s Lace, Daucus carota. Leaf number 1 was the highest leaf on the plant. Plants
were collected in late August on the Leary farm in Geneseo, New York.

We are hard pressed to answer a stu-
dent’s question as to what is the shape
of organs such as mammalian lungs
or the structure of a forest. Fractal
geometry provides a relatively simple
approach to at least describing such
shapes. Our challenge will be to, along
with our students, deduce what this
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new-found estimate of shape—the
fractal dimension—tells us about
function.

It is important to note that this exer-
cise outlines an approach to estimate
the shape of objects and not their func-
tion. Fractals, in a strict mathematical
sense, are defined as objects having

self-similar properties at all scales. This
self-similarity property, however,
clearly does not hold for real biological
structures and breaks down long
before the level of cells. The fact that
organisms are fractal at certain scales,
however, may imply the presence of
both important developmental con-
straints and the presence of conserva-
tive evolutionary processes governing
the shape of organisms. Examples of
self-similar structures include a small
leaflet on a fern frond that closely
resembles a miniature version of the
entire frond or the branch of a tree
that resembles the entire tree. It also
is possible to consider investigating
the change in shape of organisms or
structures, using fractal geometry, to
investigate individual response to
changing environmental factors. Our
current limited understanding of the
relationship between structure, mea-
sured using fractal geometry, and
function should not, I believe, hinder
our appreciation of the importance of
estimating the shape of biological
structures. We first must identify what
we have (the structure) and then, with
our students, tackle what it means for
the organism.

Conclusion
I believe this exercise is useful and

practical for a broad range of students.
Students at all levels can enjoy count-
ing the number of boxes on graph
paper intersected by leaves. The deter-
mination of fractal dimension may be
done either by calculating the slope
of lines by hand (change in y over
change in x and compared for just
leaves from the tops and bottoms of
plants) or with a statistical program
on the computer. There also are oppor-
tunities for higher-level students to test
hypotheses using leaves of replicated
plants to look for non-linear trends in
leaf shape along the stem of plants,
across species, and under different
environmental growth conditions. The
importance of shape also makes for
interesting discussions because shape
discrimination is so easy for us to
do visually, yet has generally escaped
quantitative analysis in science.
Finally, in this exercise students will
most likely find that shape does in
fact change along the stem of this plant
which can lead them to question how
shape matters for both plants and the
organisms that depend on them.
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