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Preface

This book is simply a text derived from the lectures I have given in our Real Analysis course over
the last forty-four years. The course follows the recommendations in the 2015 Curriculum Guide
from the Mathematical Association of America. This text, itself, is a sketch of the course, including
all the theorems and definitions but often giving a less than full exposition of the topics.
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Introduction: A Quick History of the
Development of Real Analysis

The main subject matter of Real Analysis is the set of real numbers and the properties of functions
from the real numbers to the real numbers. This subject has been developing for many thousands
of years in many different societies from many different regions of the Earth. All ancient civiliza-
tions had methods for measuring lengths, areas, and volumes. They applied discrete numbers to
continuous quantities. “A log was 6 cubits long.” We are fortunate to have had the discussion
of this mix of algebra and geometry in Ancient Greece preserved for us. For example, Aristotle
spends considerable time discussing many aspects of lines. He discussed lines in terms of two sets of
opposites — discrete vs. continuous and abstract vs. physical. The counting numbers {1, 2, 3, . . . }
form a discrete set while a line segment is continuous. One way of thinking about the distinction
between the discrete and the continuous is by thinking about counting and measuring. One counts
the number of olives in a crate of olives while one measures the volume of olive oil extracted from
the crate. He also distinguished between physical lines — for example a curve drawn on a piece
of wood — and the kind of abstract line that exists only in our minds. Trying to determine the
relation between the discrete and the continuous he asked the questions — “Is a line composed of
points? Is there something else needed beyond points to make it a line?”

Aristotle worked on the relations of points on a line and the whole line. He knew that a point
on a line divided the line into two parts. He also knew that if two points were specified on a line
then there was always a point on the line between those two points. But could one divide a line up
into points so that there was nothing left beyond a collection of points? His answer was interesting.
He said that a line was potentially infinitely divisible by points. That is, between any two points
on the line there was always a third point. But a line was not actually infinitely divisible by points.
Thus his answer to the basic question was that the line could not in actuality be reduced to a set
of points.

Greek mathematicians worked on abstract lines and looked for locations on those lines. The
locations were points. Given a line one could pick two distinct points on the line and call the segment
between them a unit, that is a segment of length one. One could then try to measure the length of
an arbitrary segment in terms of this unit length. It is easy to see that this wouldn’t work in general.
Take the unit segment and cut it at some interior point. Clearly the two resulting segments were
less than one in length. To measure lines numerically the ancients made an assumption. Given a
unit length and any other segment there were two whole numbers m and n such that m copies of the
unit segment was exactly the same length as n copies of the other segment. Call the unit segment
I and the other segment A. They expressed the length of A with the proportion I : A = n : m. We
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x INTRODUCTION

would say that the length of A was m/n units.

I : A = n : m

I

A
=

n

m

A =
(m
n

)
I

The Greeks did not use either of the fractional forms above, just the proportion. Their assump-
tion that such whole numbers m and n always existed led to the notion of commensurability. They
assumed that any two line segments were “commensurable,” that is they had a common measure,
a smaller segment that “measured” each of the original. Suppose that I : A = 2 : 3. In terms
of the unit length (the length of I), A has length 3/2. A segment M of length exactly half of I
would measure I. That is I = 2M , while exactly three copies of M would equal A in length. Thus
M would be a common measure of the segments I and A. It fell to the Pythagoreans somewhere
around the year 425 B.C.E. to discover that the assumption of commensurability was false. If S
and D are respectively the side and diagonal of a square then there did not exist whole numbers
m and n such that S : D = m : n. We express this by the statement that the square root of two is
irrational, in other words the ratio of side to diagonal is not a ratio of whole numbers.

This discovery led to deep research into Geometry and its relation to Arithmetic culminating
in Book X of Euclid’s Elements. From Aristotle’s point of view the discovery meant that there
were many more points on a line than previously thought. Let our unit segment I be represented
by AB where A and B are the endpoints of I. Then there is a point C somewhere on the line
such that AB : AC = S : D, where S and D are the side and diagonal of a square. How many
more points were there on a line? That question waited for about 2200 years for an answer. In the
late 1800s Georg Cantor developed Set Theory and the Theory of Infinite Cardinal Numbers. He
showed that the number of points on a line segment was a bigger infinity than the infinity of rational
numbers. Cantor’s discovery led to the realization that lines were more mysterious than Aristotle
had imagined. It is this mystery that is the subject matter of Real Analysis. At approximately
the same time that Cantor was working other mathematicians were looking at both the algebraic
properties and the space-like properties of lines. This all came together in the description of the
real numbers as a complete, ordered field. That is where we will begin the course.



Chapter 1

The Natural Numbers, the Rational
Numbers and their Arithmetic

One of the goals of this book is to explore the real numbers. The set, R, can be defined from the
rational numbers though we will only do this as a sketch in the appendix. The rational numbers,
Q, are defined via the integers. The set of integers, Z, is based on the set of natural numbers. We
will start by considering the natural numbers, which we denote by the symbol N. This is the set
N = {1, 2, 3, 4, . . . }. Some mathematicians include 0 in N. It is a matter of choice with no real
importance whether 0 is or is not in N. We just assume that it is not. We have claimed that the
real numbers can be defined but this is a long process. We will indicate in detail only the first
step, namely the axiomatic definition of the natural numbers. After that we will simply assume
the relevant arithmetic facts.

The natural numbers are the first numbers you learned about and they are basic to everything.
It may seem surprising but the natural numbers were axiomatized in the year 1889 by Giuseppe
Peano. That is, Peano stated a set of axioms that in a certain sense defined the natural numbers.
We have reduced his set of axioms to five by combining some of the originals.

Axiom 1. 1 is a natural number.

Each natural number n has a successor, namely n + 1. We denote its successor by n + + for
the following axiom.

Axiom 2. If n is a natural number then n+ + is a natural number.

The idea of successor is the basic idea involved in counting. It is really the primitive intuition
that we develop in kindergarten that makes numbers make sense.

1 is a special natural number as shown in the next axiom.

Axiom 3. 1 is not the successor of any natural number.

Axiom 4. If m and n are distinct natural numbers (m 6= n), then m+ + 6= n+ +.

What allows us to put all of the arithmetic of the natural numbers on a sound footing is the
principle of induction. We take that principle as an axiom.

Axiom 5. Let P (n) be a statement about the natural number n. If P (1) is true and if whenever
P (n) is true then P (n+ +) is also true, then P (n) is true for all natural numbers n.

Definition 1.1 (The Set of Natural Numbers). The set N of natural numbers consists of 1 and all
the successors of any element in N.

1



2 CHAPTER 1.

An equivalent form of Axiom 5 sometimes makes it easier to understand induction.

Definition 1.2 (Well-Ordered Set). A set A is well-ordered if every non-empty subset of A has a
smallest element.

Axiom 5 (Alternate). The set of natural numbers is well ordered.

We will prove that the alternate axiom implies Axiom 5, which should make clearer the con-
nection between induction and the intuitive idea of the natural numbers.

Theorem 1.3. Axiom 5 (Alternate) implies Axiom 5.

To prove Theorem 1.3, let P be a statement about the natural number n. We’ll show that if P
satisfies the following two properties, then P is true for all natural numbers:

i P (1) is true,

ii if P (k) is true, then P (k + 1) is also true.

Proof. Let P (n) be a statement about the natural numbers that satisfies i) and ii) but is not true
for every natural number n. Let S = {n ∈ N | P (n) is false}. Then by our assumption S is not
empty. By the Alternate Axiom 5, S has a smallest element. Call it m. The statement P (m) is
false since m ∈ S. Thus by i) m 6= 1. Since m is a natural number this implies that m > 1. Thus
k = m1 is a natural number smaller than m. Hence P (k) is true since m = k + 1 is the smallest
natural number for which P is false. But by ii) P (k + 1) = P (m) is true which contradicts the
assumption that S is non-empty.

Summing this up we see that induction works because if a statement has a counterexample it
has to have a smallest counterexample. Axiom 5 says that the conditions on P imply that it has
no smallest counterexample.

We now expand our work to the set of integers denoted by Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.
While mathematical induction will be needed directly in the text only rarely, it has very important
uses. There are many variants to the definition of induction given above. Essentially induction is
used to prove that a statement about integers is true for all integers in certain kinds of sets. The
form given in the outline assumes that P (n) is a statement about the natural number n. The base
case is n = 1, that is P (1) is the first statement that must be shown true. However the principle
of induction can begin at any integer z0. In this form the principle reads:

If P (n) is a statement about the integer n and the following two conditions hold, then
P (n) is true for all integers in the set {n ∈ Z | z0 ≤ n}. The conditions are:

i P (z0) is true.

ii For any integer k satisfying k ≥ z0, if P (k) is true then P (k + 1) is true.

A useful exercise is to state the principle of induction for sets of the form {n ∈ Z | n ≤ z0}.
Now we consider the rational numbers. They will serve a very important role in this course.

They will be the skeleton over which we build the real numbers. The set of rational numbers, or
Q, is defined by Q = {pq | p, q ∈ Z, q > 0, gcd(p, q) = 1}, where gcd(p, q) represents the greatest
common divisor of p and q. In this definition we pick a particular form for each rational number,
namely as a quotient of integers in lowest terms with a positive denominator. This definition helps
us avoid certain computational difficulties.
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Example 1.4. We know that
√

a
b =

√
a√
b

and that −1 = −1
1 = 1

−1 . Combining these yields√
−1

1
=

√
−1

1
=
√
−1 =

√
1

−1
=

1√
−1

.

However, the complex numbers
√
−1 and 1√−1 are not equal to each other, but are negatives of

each other. Our definition of the rationals avoids this problem.

We make a connection between the rational numbers and the real numbers through decimal
expansions. The process of long division (with potentially infinitely many steps) gives a decimal
expansion for each rational number.

Example 1.5.

1

2
= 0.5 = 0.5000 · · · = 0.4999 · · ·

1

3
= 0.333 · · ·

1

7
= 0.142857142857 · · ·

7

40
= 0.175 = 0.1750000 · · · = 0.174999 · · ·

We have used · · · to indicate the repeating pattern of digits in each case. There is a better way
to do this using a bar notation.

Example 1.6.

1

2
= 0.5 = 0.49

1

3
= 0.3

1

7
= 0.142857 · · ·

7

40
= 0.175 = 0.1749

Theorem 1.7. Every rational number has a repeating decimal expansion.

Example 1.8. The rational number 1
2 has two distinct repeating decimal expansions, namely

1
2 = 0.5 = 0.50 = 0.49. The first expansion is called a terminating expansion since it is all
zeros after some point in the expansion. The second expansion is said to be repeating and non-
terminating. Are these two expansions really the same number? They differ in infinitely many
places. That 1

2 = 0.5 is easy to show by long division but what about that 1
2 = 0.49 = 0.49999 · · ·?

Let x = 0.49999 · · ·. Clearly (or not so clearly) 10x = 4.999999 · · ·. Subtracting yields

10x− x = 9x = 4.99999 · · · − 0.4999999 · · · = 4.5000 · · · .

Thus 9x = 4.5 or x = 4.5
9 = 1

2 .
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Example 1.9. The number x = 17.3571428571428 · · · = 17.3571428 is a repeating, non-terminating
decimal expansion. It also represents a rational number. Notice that the expansion repeats in 6
places. Multiply x by one million or 106.

1, 000, 000x = 17, 357, 142.8571428

x = 17.3571428

Subtracting yields 999, 999x = 17, 357, 125.5. Note that the repeating part matches up in
position so that most of the subtractions result in 0. Now we have x = 17,357,125.5

999,999 = 34,714,251
1,999,998 = 243

14 .
The last fraction is in lowest terms.

Which rational numbers have terminating decimal expansions? The denominator when the
fraction is expressed in lowest terms tells the full story. A terminating decimal expansion can always
be written as a fraction with a denominator which is a power of 10 (and an integer numerator).

Example 1.10.

12.345 =
12, 345

1, 000
=

2, 469

200

Thus in lowest terms a fraction which has a terminating decimal expansion has a denominator
which is a factor of a power of 10. In other words, fractions whose denominators are products of
only 2’s and 5’s have terminating expansions.

We have made all the above computations in base 10 arithmetic but the same facts are true in
any other base 2 or greater.

For example as a base 2 or binary expansion 1
2 = 0.12 and 3

16 = 0.00112. Both of these fractions
have denominators which are powers of 2 and are hence terminating. The situation is different for
a fraction like 1

3 .

1

3
= 0.010101 · · ·2 = 0.012

We will wait until we cover infinite series to see how to generate this expansion.

Example 1.11. A few examples of expansions in other bases.

1

2
= 0.1111 · · ·3

1

2
= 0.2222 · · ·5

1

2
= 0.3333 · · ·7

1

3
= 0.131313 · · ·5

1

3
= 0.2222 · · ·7

Example 1.12 (Dirichlet’s Function). This is a very simply defined function that will turn out to
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be useful in several different contexts. Let d : R→ R be defined by:

d(x) =

{
0 if x 6∈ Q
1 if x ∈ Q

.

Here are a few values of the function: d(0) = 1, d(7) = 1, d
(

1√
2

)
= 0, d(3 + 3

√
7) = 0.

The graph of d would look roughly like two horizontal lines: y = 0 and y = 1. They would not
be solid lines, however.

Example 1.13 (Thomae’s Function). Thomae’s function is related to Dirichlet’s function, defined
above but it is a bit more complicated to compute. We assume in our definition that every rational
number is expressed as p

q , where p and q share no common factors greater than 1 and that q > 0.
Given this we define Thomae’s function, t : R→ R by

t(x) =

{
0 if x 6∈ Q
1
q if x = p

q ∈ Q
.

Let n be any integer. Then expressed as a rational number of the correct form n = n
1 . Hence

t(n) = 1. Thus t(0) = 1, t(−7) = 1, and t(1000) = 1. Additionally,

t(
√

2) = t(
3
√

7) = t(1−
√

3) = 0,

while t
(−3

8

)
= 1

8 and

t(1.024) = t

(
1024

1000

)
= t

(
128

125

)
=

1

125
.
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1.1 Exercises

Exercise 1.1. Express the following rational numbers as repeating decimal expansions: 3
11 , 5

9 , 20
13 ,

and 6
37 .

Exercise 1.2. Express the following repeating decimal expansions as quotients of integers in lowest
terms: 0.123123 · · ·, 0.1231212 · · ·, and 0.699999 · · ·.

Exercise 1.3. An irrational number can be defined as a number represented by an infinite decimal
expansion that is neither repeating nor terminating. It is rather difficult to prove that commonly
used irrational numbers like

√
2, 3
√

7, π, or e have decimal expansions that are neither repeating nor
terminating. But one can define an irrational number by creating a non-repeating, non-terminating
decimal expansion. Create a non-terminating, non-repeating decimal expansion, hence create an
irrational number.

Exercise 1.4. Let x = 0.137137137 · · · and y = 0.93939393 · · ·. Express x + y as a repeating
decimal expansion.

Exercise 1.5. The decimal expansions 0.142857 and 0.10102 clearly represent rational numbers.
Thus their sum is a rational number. In how many places does its decimal expansion repeat?

Exercise 1.6. Prove that if x > 0 and n is a natural number then (1 + x)n ≥ 1 + nx.

Exercise 1.7. Prove that the sum of the first n consecutive odd numbers starting at 1 is n2.

Exercise 1.8. Prove that if p is a prime number then for every n ∈ N, the number np − nis a
multiple of p.

Exercise 1.9. Let the sequence {xn} be defined as follows: x1 = 1, xn+1 = xn
2 + 1 for all n ∈ N.

Using induction, prove that the sequence is increasing and bounded above by 2.

Exercise 1.10. Let A be a set with exactly n elements. Prove that A has exactly 2n different
subsets.

Exercise 1.11. For each n ∈ N, let In = {1, 2, 3, . . . , n}. Prove by induction that if n 6= m then
In and Im cannot be put into 1-1 correspondence.

Exercise 1.12. Let {Fn} be the sequence of Fibonacci numbers, that is:

F0 = 0, F1 = 1, and Fn+2 = Fn + Fn+1 for all n ≥ 0.

Thus {Fn} = {0, 1, 1, 2, 3, 5, 8, 13, 21, . . . }.
Prove the following identities.

a) F0 + F1 + · · ·+ Fn = Fn+2 − 1

b) F0 + F2 + F4 + · · ·+ F2n = F2n+1 − 1

c) F1 + F3 + F5 + · · ·+ F2n−1 = F2n

Exercise 1.13. Find a formula for the sum of the first n perfect cubes, starting from 1. Use
induction to prove that your formula is correct.



Chapter 2

Preliminaries Concerning Sets and
Functions

Real analysis is often described as the course in which one proves the results one uses in Calculus.
This is true as far as it goes but more needs to be said. First, real analysis describes as fully as
possible the set called the real numbers, R. The real numbers have both an algebraic structure and
a space structure. The algebraic structure consists of the operations on the set and the variety of
kinds of numbers (rational and irrational, etc.) contained in the set. The space structure shows
how points are related to nearby points. Much of what is developed in this course comes about
through the intertwining of the two structures.

There are many ways to describe the real numbers. One is simply that the real numbers are all
the numbers that can be expressed as decimal expansions. This definition needs a caution in that
many real numbers have two different decimal expansions. For example 1 and 0.999999 · · · are the
same number. Any rational number whose denominator is a product of 2’s and 5’s only similarly
has two decimal expansions. For example 3

40 = 75
1,000 = 0.075 = 0.749999 · · ·.

Another way to describe the real numbers is to start with the rational numbers, Q, and to fill
in the holes between these numbers using an axiom called the Completeness Axiom. The decimal
expansions of a real number provide a sequence of rational numbers that tend to that real number.
Think about how you would start with a decimal expansion like 1.123123123 · · · and produce a
sequence of rational numbers that converges to that number.

Perhaps the best way to talk about the real numbers initially is to describe them as a complete
ordered field. We define first a field and then an ordered field. The completeness aspect will appear
in chapter 3.

A field is essentially a set of numbers on which one can do ordinary algebra.

Definition 2.1 (Field). Let F be a set with two binary operations, + and × (or ·), that satisfy
the following axioms. Then F is called a field. For each of the following assume that x, y, z ∈ F .

a) (Closure of Addition) For all x and y in F , x+ y ∈ F .

b) (Commutativity of Addition) For all x and y in F , x+ y = y + x.

c) (Associativity of Addition) For all x, y, and z in F , (x+ y) + z = x+ (y + z).

d) (Identity Element for Addition) There is an element 0 in F such that 0 + x = x+ 0 = x for
every x ∈ F .

7



8 CHAPTER 2. PRELIMINARIES CONCERNING SETS AND FUNCTIONS

e) (Additive Inverse of an Element) To each x ∈ F there corresponds a −x ∈ F such that
x+ (−x) = (−x) + x = 0.

f) (Closure of Multiplication) For all x and y in F , x× y ∈ F .

g) (Commutativity of Multiplication) For all x and y in F , x× y = y × x.

h) (Associativity of Multiplication) For all x, y, and z in F , (x× y)× z = x× (y × z).

i) (Identity Element for Multiplication) There is an element 1 in F with 1 6= 0 such that
1× x = x× 1 = x for every x ∈ F .

j) (Multiplicative Inverses) If x 6= 0 is in F , then there exists 1
x ∈ F satisfying x× 1

x = 1
x×x = 1.

k) (Distributivity of Multiplication over Addition) For all x, y, and z in F , (x + y) × z =
(x× z) + (y × z).

These axioms guarantee that we can perform all the operations we learned in algebra with the
elements of a field. Note that several necessary algebraic facts are not part of the axioms and need
to be derived. We have not assumed, for instance that additive inverses and multiplicative inverses
are unique. We have not assumed that 0 and 1 are distinct. There are many other results that one
uses without thinking in algebra, including those listed below.

1. 0 · x = 0

2. (−1) · x = −x

3. (−x) · y = −(x · y)

4. (−x) · (−y) = x · y

We will not prove these results but we will use them quite freely.

Definition 2.2 (Ordered Field). An ordered field is a field F with a binary relation < called an
order satisfying:

a) If x, y, z ∈ F and x < y then x+ z < y + z.

b) If 0 < x and 0 < y then 0 < x · y.

c) For any x and y in F exactly one of the following holds: x < y or y < x or x = y.

The real numbers are often defined as a complete, ordered field that contains the rational
numbers. This does not give rise to a unique field and we do not yet know what the word complete
means. That is the subject of the next chapter.

Much of the work of this course deals not with single real numbers but sets of real numbers.
We need the basic vocabulary of Set Theory and Functions.

Definition 2.3 (Sets and Set Operations). Let A and B be sets.

a) A is a subset of B, written A ⊂ B, if whenever x ∈ A then x ∈ B. (Note that we will use ⊂
where some texts use ⊆.)

b) The union of A and B, written A ∪B, is the set A ∪B = {x | x ∈ A or x ∈ B}.
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c) The intersection of A and B, written A ∩B, is the set A ∩B = {x | x ∈ A and x ∈ B}.

d) The set difference, A without B, written A−B or A/B, is the set A−B = {x ∈ A | x 6∈ B}.
This is also called the complement of A relative to B.

e) The complement of a set A, with respect to the real numbers R, is the set Ac = {x ∈ R | x 6∈
A}.

f) The empty set (or null set), ∅, is the set containing no elements.

g) The Cartesian Product of A and B is the set A×B = {(a, b) | a ∈ A and b ∈ B}.

Among the most useful sets of real numbers are intervals. Given two real numbers, a and b,
with a < b, there are four different intervals defined by these two numbers:

• The open interval (a, b) = {x ∈ R | a < x < b}.

• The closed interval [a, b] = {x ∈ R | a ≤ x ≤ b}.

• The half-open or half-closed intervals [a, b) = {x ∈ R | a ≤ x < b} and (a, b] = {x ∈ R | a <
x ≤ b}.

Using the symbols ∞ and −∞ one defines other intervals:

• (−∞, b) = {x ∈ R | x < b}

• (−∞, b] = {x ∈ R | x ≤ b}

• (a,∞) = {x ∈ R | x > a}

• [a,∞) = {x ∈ R | x ≥ a}

The entire set of real numbers can be denoted as an interval R = (−∞,∞).
Two special cases need consideration:

• The set [a, a] = {a} consists of a alone.

• Finally, any interval of the above form where a > b has no elements and will be named the
empty set. For example we write ∅ = [2, 1] = {x ∈ R | 2 ≤ x ≤ 1}. No real number is
simultaneously greater than or equal to 2 and less than or equal to 1.

Definition 2.4 (Functions). Let A and B be sets. A function f from A to B, written f : A→ B,
is a collection f of ordered pairs, (a, b) such that a ∈ A, b ∈ B, and for each a there is exactly
one ordered pair (a, b) in the set f . The set A is called the domain of f . The set B is called the
co-domain of f . The range of f is the set {b ∈ B | (a, b) ∈ f for some a ∈ A}.

Note that the range of f is a subset of the co-domain B but not necessarily equal to B. Also
note that a function from A to B is a subset of the Cartesian product of A and B.

Definition 2.5 (Injective Function). Let f : A → B be a function. We say that f is one-to-one,
or injective, if whenever a1 6= a2 for points a1, a2 ∈ A then f(a1) 6= f(a2).

Definition 2.6 (Surjective Function). Let f : A → B be a function. We say that f is onto, or
surjective, if for each b ∈ B there is at least one a ∈ A such that f(a) = b.
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Definition 2.7 (Bijective Function). A function, f : A → B, that is both one-to-one and onto is
called a one-to-one correspondence between A and B or a bijection.

Definition 2.8 (Inverse of a Function). A function g : B → A is the inverse of the function
f : A → B if g(f(a)) = a for every a in A and f(g(b)) = b for every b in B. The inverse of f is
typically denoted by f−1, once established as the inverse.

The interactions between sets and functions are very important parts of Real Analysis. We pick
out the direct image and the inverse image as especially important.

Definition 2.9 (Direct and Inverse Images). Let f : A→ B be a function.

a) For U ⊂ A, let f(U) = {y ∈ B | y = f(x) for some x ∈ U}. The set f(U) is called the direct
image of U under f .

b) For V ⊂ B, let f−1(V ) = {x ∈ A | f(x) ∈ V }. The set f−1(V ) is called the inverse image of
V under f . Note that the inverse image of V is defined even if f does not have an inverse as
a function.

Definition 2.10 (Important Subsets of the Real Numbers). There are several very important
subsets of the real numbers which we now define and give notation for.

• N is the set of natural numbers.

• Z = {. . . ,−2,−1, 0, 1, 2, . . . } is the set of integers.

• Q = {pq | p ∈ Z, q ∈ N, and gcd(p, q) = 1} is the set of rational numbers. The rational
numbers form an ordered field but not a complete ordered field.

• R is the set of real numbers. One of the goals of this course is to understand what R actually
is.

Theorem 2.11 (Triangle Inequality). Let x and y be real numbers. Then |x+ y| ≤ |x|+ |y|.

Proof. From algebra, |x + y|2 = (x + y)2 = x2 + 2xy + y2 = |x|2 + 2xy + |y|2. If x and y are of
opposite sign then 2xy < 2|xy| and equality holds otherwise. Thus |x + y|2 = |x|2 + 2xy + |y|2 ≤
|x|2+2|x||y|+|y|2 = (|x|+|y|)2. Since the first and last terms are positive we have |x+y| ≤ |x|+|y|.

Thus we have equality if the numbers have the same sign and strict inequality if they are of
different sign.

Theorem 2.12 (The Cauchy-Schwarz Inequality). Let x̂ = (x1, x2, . . . , xn) and ŷ = (y1, y2, . . . , yn)
be n-tuples of real numbers. Then

(x1y1 + x2y2 + · · ·+ xnyn)2 ≤ (x21 + x22 + · · ·+ x2n)(y21 + y22 + · · ·+ y2n).

Proof. We will use the notation for dot product to simplify matters. With x̂ and ŷ as above let
x̂·ŷ = x1y2+x2y2+· · ·+xnyn. Note that any n-tuple dotted with itself is a sum of squares and hence
is greater than or equal to 0. Consider for a real number λ, the dot product (x̂+λŷ) · (x̂+λŷ) ≥ 0.
Expanded we have x̂ · x̂+ 2λx̂ · ŷ+ λ2ŷ · ŷ ≥ 0. Think of this as a quadratic in λ. Since it is always
greater than or equal to 0, the discriminant must be less than or equal to 0. The discriminant is
(2x̂ · ŷ)2 − 4(x̂ · x̂)(ŷ · ŷ) ≤ 0. Dividing by 4 and moving the second term to the right hand side
yields (x̂ · ŷ)2 ≤ (x̂ · x̂)(ŷ · ŷ) or exactly the inequality we seek.

Theorem 2.13 (The DeMorgan Laws). Let {Uα | α ∈ A} be any collection of sets. Then:
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(1)
(⋂

α∈A Uα
)c

=
⋃
α∈A U

c
α

(2)
(⋃

α∈A Uα
)c

=
⋂
α∈A U

c
α
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2.1 Exercises

Exercise 2.1. Prove: The sum of a ration number and an irrational number is irrational.

Exercise 2.2. The statement “The product of a rational number and an irrational number is
irrational” is not always true. When is the statement false? Rewrite the statement to make it true
and prove it.

Exercise 2.3. Find pairs, a and b, of irrational numbers (if possible) fitting the specified condition.

a) a+ b is irrational

b) a+ b is rational

c) ab is irrational

d) ab is rational

Exercise 2.4. The sum of two rational numbers is always a rational number. It is possible for
the sum of two irrational numbers to be rational. For example

√
7 and 7 −

√
7. Is it possible for

the sum of three irrational numbers to be rational? Either prove that it is impossible or give an
example.

Exercise 2.5. Let x = 1√
3+
√
7
. Find a natural number n such that 0 < 1

n < x.

Exercise 2.6. Find two rational numbers, one greater than
√

7 and one less than
√

7 such that
they are each within 0.00001 of

√
7.

Exercise 2.7. Prove: For any sets U , V , and W , (U ∪ V ) ∩W = (U ∩W ) ∪ (V ∩W ).

Exercise 2.8. Prove: For any sets U and V , (U ∩ V )c = U c ∪ V c and (U ∪ V )c = U c ∩ V c.

Exercise 2.9. Let A = B = R (the Real Numbers). Let f(x) = x2− 1 be a function from A to B.
Find each of the following:

a) f([0, 1])

b) f([−1, 2])

c) f([1, 2])

d) f([0, 2]) ∩ f([1, 3])

e) f([0, 2]) ∪ f([1, 3])

f) f−1([0, 3])

g) f−1([0, 10])

h) f−1([−1, 1])

Exercise 2.10. Let f : N → N be defined by f(n) = 2n + 1. Let E be the set of even natural
numbers and T be the set of natural numbers divisible by 3. Find each of the following:

a) f(E)
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b) f(T )

c) f(E ∪ T )

d) f(e) ∪ f(T )

e) f−1(E)

f) f−1(T )

g) f−1(E ∪ T )

h) f−1(E) ∪ f−1(T )

Exercise 2.11. Let f : A → B and let U and V be subsets of A. It is true that f(U ∪ V ) =
f(U)∪f(V ). However, the statement for intersections is not true. Show by example that f(U∩V ) =
f(U) ∩ f(V ) is not necessarily true. Use an example where f is a simple function and the sets are
intervals in the real numbers.

Exercise 2.12. Suppose that f : A → B is a one-to-one function and U and V are subsets of A.
Prove that f(U ∩ V ) = f(U) ∩ f(V ).

Exercise 2.13. Let f : A → B and let U and V be subsets of A. Prove that f−1(U ∪ V ) =
f−1(U) ∪ f−1(V ) and f−1(U ∩ V ) = f−1(U) ∩ f−1(V ).

Exercise 2.14. Let f : A→ B and g : B → C be functions such that g ◦ f : A→ C is a bijection
(one-to-one and onto). Prove that f is one-to-one and that g is onto. Find an example of two
functions that satisfy the statement for which f is not onto and g is not one-to-one.

Exercise 2.15. Find real numbers x and y such that equality holds in the triangle inequality. Find
another pair of numbers x and y such that the equality does not hold. When does equality have to
hold?

Exercise 2.16. Negate the statement “For all real numbers a and b, if a < b, then there is a natural
number n such that a + 1

n < b.” It is not sufficient to write “It is not the case that” followed by
the sentence.

Exercise 2.17. Negate the statement “For every ε > 0, there is a δ > 0 such that for all real
numbers x if |x| < δ then |x2| < ε.”

Exercise 2.18. Suppose that a and b are rational numbers. Show that it is impossible that√
3 = a+ b

√
2. You may use the fact that

√
n is an irrational number if n is a non-square natural

number.

Exercise 2.19. Suppose that n, m, and p are natural numbers and x = p
2n·5m . Show that x has a

terminating decimal expansion.

Exercise 2.20. Suppose that a1, a2, . . . an are each decimal digits from the set {0, 1, 2, . . . , 9}.
Prove that the repeating decimal expansion given by x = 0.11a2 · · · ana1a2 · · · an · · · is a rational
number.

Exercise 2.21. Give an example of two functions, f and g, such that f 6= g but f ◦ g = g ◦ f .

Exercise 2.22. Define (if possible) a function f : [0, 1]→ R such that f(x) = 1
x for all x ∈ (0, 1].
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Chapter 3

Moving from Q to R

One of the most important episodes in the History of Mathematics was the discovery of irrational
numbers. The historical record is not clear as to which irrational number was discovered first, to
who made the discovery, and to what the method of discovery was. In fact, the discovery was
not of an irrational number at all but of a ratio that was not equal to a ratio of natural numbers.
The discovery led to the gradual realization that there was a useful set of numbers that contained
the rational numbers. Finally in the Nineteenth Century at least two different mathematicians
— Dedekind and Cantor — defined the real numbers using the rationals as a starting point. We
will adopt a somewhat simpler definition of the real numbers, namely we will conceive of the real
numbers, R, as a complete ordered field containing the rational numbers, Q. The word “complete”
is the important word here. Field and ordered we have already met. “Complete” roughly means
that the real numbers are the rational numbers with all the holes between them filled in. We will
make an assumption of “completeness” for the reals. This assumption will be based on a fairly
simple idea from set theory, that of the “least upper bound”.

Definition 3.1 (Bounds for Sets). A set A of real numbers is said to be bounded above if there
is a real number, a, such that x ≤ a for every x ∈ A. The number a is called an upper bound of
A. A similar definition holds for bounded below and lower bound. A set A is bounded if it is both
bounded above and bounded below.

Definition 3.2 (Least Upper Bound and Greatest Lower Bound). Let A be a set of real numbers.
A real number a is called the least upper bound (or supremum) of A if a is an upper bound of A and
if b is any upper bound of A then b ≥ a. A similar definition holds for the greatest lower bound (or
infimum) of A. We denote the least upper bound of A by lubA or supA (glbA or inf A for greatest
lower bound).

Example 3.3. What do these first two examples tell you about whether a least upper bound of a
set is in the set?

1. lub[0, 1] = 1

2. lub(0, 1) = 1

3. glb
{

1, 12 ,
1
3 ,

1
4 , . . .

}
= 0

Before we explore what least upper bounds might actually be we make an assumption that they
exist. This assumption actually defines the real numbers.

15
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Axiom 6 (The Completeness Axiom). A non-empty set of real numbers that is bounded above
has a least upper bound.

Theorem 3.4. The empty set does not have a least upper bound.

Proof. Every real number is an upper bound of the empty set and since there is no smallest real
number there is no least upper bound for the empty set. How do we know that there is no smallest
real number? Suppose x represented the smallest real number. Then x1 would be a smaller real
number.

Directly applying the definition of least upper bound is often difficult. We have a criterion
for least upper bounds that is a useful alternative. The idea behind this criterion is illustrated
in Figure 3.1, below. The real number a is an upper bound of the set A and the criterion claims
that a is the least upper bound of A if no matter how close one gets to a from below (closeness
determined by ε > 0) there is always an element of A closer to a. In the figure there are several
elements of A that are between a− ε and a. No matter how small ε > 0 is, there will be points of
A between a− ε and a.

aa− ε

ε

Figure 3.1

Theorem 3.5. Let A be a non-empty set and let a be an upper bound of A. Then a is the least
upper bound of A, that is a = lubA, if and only if for each ε > 0 there is an x ∈ A such that
a− ε < x.

Proof. For the forward conditional, assume a = lubA and let ε > 0 be given. If there is no x ∈ A
satisfying a− ε < x then a− ε is an upper bound of A that is smaller than its least upper bound,
which is a contradiction. Thus the required x must exist.

For the backward conditional: Now assume the condition for upper bound a and suppose that
b = lubA with b < a. We need to show that this leads to a contradiction. Let ε = a−b

2 > 0. By our

assumption there is an x ∈ A satisfying a− ε < x but x > a− ε = a− a−b
2 = a+b

2 > b. Thus there
is an x ∈ A satisfying b < x. Thus b is not even an upper bound of A, much less its least upper
bound.

Corollary 3.6. Let A be a non-empty set and let a be a lower bound of A. Then a is the greatest
lower bound of A, that is a = glbA, if and only if for each ε > 0 there is an x ∈ A such that
x < a+ ε.

Example 3.7. The least upper bound of the interval (−∞, 0) is 0. Clearly 0 is an upper bound of
the set. Let ε > 0 be arbitrary. Let x = − ε

2 . Then 0− ε = −ε < − ε
2 = x.

How does this argument have to be altered to show that lub(−1, 0) = 0? The problem is that
choosing a large ε > 0, say ε = 10, would give us x = − ε

2 = −5, which is not in (−1, 0). The
solution is a bit awkward but not difficult. Suppose ε > 0 is given. If ε ≥ 1, let x = −1

4 . If ε < 1
then let x = − ε

2 .
We use the Completeness Axiom almost immediately to prove some basic results about the real

numbers. The first result appears to be obvious but we would have a hard time justifying it without
the axiom.
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Theorem 3.8. The set, N, of natural numbers is not bounded above.

Proof. Suppose that N is actually bounded above by a real number x. Since the natural numbers
is a non-empty set and we have an upper bound for it, then N must have a least upper bound. Let
y = lubN and let ε = 1. Then by Theorem 3.5 there is an element p of N such that y−1 < p. Hence
y < p+ 1. This contradicts that y is an upper bound of N since p+ 1 is a natural number.

Theorem 3.9 (The Archimedean Principle). If x > 0 is a real number, there is a natural number
n such that 1

n < x.

Proof. Let x be any positive real number. Then 1
x is also a positive real number. There must

be a natural number n that is greater than 1
x or else 1

x would be an upper bound of the natural
numbers. We know that there is no such upper bound. Thus there is a natural number n satisfying
0 < 1

x < n. Inverting yields 1
n < x.

The Archimedean Principle quickly gives us a fundamental fact about the relation between the
rationals, Q, and the reals, R.

Theorem 3.10 (The Density of the Rational Numbers). There is a rational number between any
two distinct real numbers.

Proof. Let a and b be real numbers with a < b. We need to find a rational number r that satisfies
a < r < b. By assumption b − a > 0 and by the Archimedean Principle (Theorem 3.9) there is a
natural number n satisfying 1

n < b − a. The idea of the proof is that the rational numbers of the
form m

n are evenly spaced in the real numbers, separated by a distance of 1
n . Since a and b are

separated by more than the distance 1
n there has to be a rational number with denominator n in

between a and b. The trick is to find an appropriate numerator, m.
Let A =

{
p ∈ Z | b ≤ p

n

}
. The set S is a non-empty set of integers that is bounded below. Thus

it has a smallest element. Call it m. Then b ≤ m
n . Suppose that b = m

n , then m−1
n < b. We claim

that a < m−1
n , which proves the theorem. Since m−1

n < b = m
n we know that b− m−1

n ≤ 1
n < b− a.

Hence a ≤ m−1
n by rearranging the inequality. If b < m

n then m−1
n < b by the fact that m is the

smallest element of S. Again b− m−1
n ≤ 1

n < b− a and the theorem is proved.

The same result holds for irrational numbers. Thus between every two distinct real numbers
there is an irrational number. The theorem can be made even stronger. Between every two distinct
real numbers there are infinitely many rational numbers.

The next theorem is extremely useful even though its statement seems very detailed and spe-
cialized.

Theorem 3.11 (The Nested Intervals Theorem). Let In = [an, bn] be a non-empty closed interval
(an ≤ bn) for each natural number n. Further suppose that I1 ⊃ I2 ⊃ I3 ⊃ · · · . Then

⋂∞
n=1 In is

non-empty. In other words, there is a real number x contained in every one of the intervals.

Proof. If In = [an, bn], In+1 = [an+1, bn+1], and In+1 ⊂ In then an ≤ an+1 and bn+1 ≤ bn. Further
since all of the intervals are contained in I1 = [a1, b1], it follows that an ≤ b1 for all n. Let
A = {an | n ∈ N}. Then S is non-empty and bounded above (by b1). Additionally S has a least
upper bound by the Completeness Axiom (Axiom 6). Call it x, that is x = lubS. We claim that x
is in every interval, thus proving the theorem. Suppose not. Then there is a natural number n such
that x 6∈ In or equivalently x > bn. Let ε = x − bn > 0. By Theorem 2.12, the Cauchy Schwarz
Inequality, there must be an element of S, say am, such that x− ε < am but since x− ε = bn that
implies that bn < am. This cannot happen but it takes two cases to show that it cannot. First
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assume that n ≤ m. Then bm ≤ bn and it follows that bm < am, which implies that Im is an empty
interval, contrary to our assumption. The other case is essentially the same. Thus we have that
x ∈ In for all n and the theorem is proved.

With this theorem in hand we shall be able to prove some very important facts about the real
numbers. But that must wait for a few new ideas to come forth.
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3.1 Exercises

Exercise 3.1. Let X be the set of all upper bounds of (0, 1). Express X as an interval.

Exercise 3.2. Which of the following sets are bounded above? Which are bounded below? Which
are bounded?

a) P =
{
n ∈ N | n2 + 1 is even

}
b) A =

{
m

m+n | m,n ∈ N
}

c) B =
{
m+n
n | m,n ∈ N

}
Exercise 3.3. Prove that 2 is the least upper bound of the open interval (−∞, 2).

Exercise 3.4. Prove that 3 is the least upper bound of the open interval (1, 3).

Exercise 3.5. Let A be a set of real numbers. Prove: If a ∈ A is an upper bound of A then
a = supA.

Exercise 3.6. Find lubA and glbA for each of the following sets.

a) A =
{
n ∈ N | n2 + 2 < 50

}
b) A =

{
m

m+n | m,n ∈ N
}

c) A =
{
m
n | m,n ∈ N and m+ n = 15

}
d) A =

{
1
2 ,

2
1 ,

2
3 ,

3
2
3
4 ,

4
3 , . . .

}
e) A =

{
1 + (−1)n

n | n ∈ N
}

Exercise 3.7. Find a sequence of non-empty open intervals, (an, bn), satisfying (an, bn) ⊇ (an+1, bn+1)
such that the intersection of all the intervals is empty.

Exercise 3.8. Find a rational number between 1√
10

and 1√
11

and one between 1
2+
√
10

and 1
2+
√
11

.

Exercise 3.9. Let A be a set of real numbers with a least upper bound and let B = {−x | x ∈ A}.
Prove that glbB exists and satisfies glbB = −lubA.

Exercise 3.10. Consider the statement: “There is a smallest positive real number.” Is it true or
false, and why?

Exercise 3.11. Give an example of a set of rational numbers that is bounded above but whose
least upper bound is not a rational number.

Exercise 3.12. Suppose that lubA = a and lubB = b for non-empty sets of real numbers A and
B. Do lub(A∪B) and lub(A∩B) always exist? If not, does either sometimes exist and sometimes
not? If they do exist, what are they?

Exercise 3.13. Suppose that A and B are non-empty sets that are bounded above. Let A+B =
{a+ b | a ∈ A, b ∈ B}. Prove that lub(A+B) = lubA+ lubB.

Exercise 3.14. Let a < b be irrational numbers. Prove that there is a rational number p such
that a < p < b.
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Exercise 3.15. Let In =
[
1− 1

n , 1 + 3
n+1

]
for each natural number n. Find

⋂∞
n=1 In.

Exercise 3.16. Let 0 < a < 1. Prove that a <
√
a.

Exercise 3.17. Let g(x) =


1 0 ≤ x ≤ 1

2 1 < x < 2

3 2 ≤ x ≤ 3

. Suppose that f : [0, 3] → R satisfies f(x) ≤ g(x) for

all x ∈ [03].

a) Is f bounded on [0, 3]? Justify your answer.

b) Does lub{f(x) | x ∈ [0, 3]} exist? Again, justify your answer.

c) Can you compute lub{f(x) | x ∈ [0, 3]}?
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Cardinality

Although mathematicians had been using the real numbers for thousands of years it was only in the
1800s that Georg Cantor discovered a very important fact about the set of real numbers. He looked
carefully at the notion of counting and developed a definition for the number of elements in a set,
or the cardinality of the set. He found that the set of rational numbers and the set of irrational
numbers, although both infinite, had a different infinity of elements. It would take mathematicians
fifty years to sort out the consequences of this difference. Along the way he also essentially invented
set theory. His discovery is essential for an understanding of the real numbers.

The definition of cardinality is an abstract definition derived from the process of counting out
the elements of a set.

Definition 4.1 (Same Cardinality). Two sets, A and B, have the same cardinality if there is a
one-to-one correspondence between them. In this case we write |A| = |B|.

When A and B are both finite, we interpret this to mean that A and B have the same number
of elements. When A and B are both infinite, they both have infinitely many elements but may
not have the same cardinality.

Definition 4.2 (Cardinalities of Sets). A set of real numbers (or actually any set) is finite if it is
empty or if there is a one-to-one correspondence between it and a set of the form {1, 2, 3, . . . , n}
for some natural number n. A set is infinite if it is not finite. A set is countably infinite if there is
a one-to-one correspondence between the set and the set of natural numbers, N. A set is countable
if it is finite or countably infinite. A set is uncountable if it is not countable.

Example 4.3 (Countably Infinite Sets). The following sets are all countably infinite. We provide
the bijections between these sets and the set of natural numbers.

1. The integers — Z

Define f : N→ Z by f(n) =

{
n
2 if n is even
1−n
2 if n is odd

. It is not hard to show that f is a bijection.

Thus |Z| = |N|.

2. The prime numbers.

Let P be the set of prime numbers. We send natural number n to the nth prime.

3. The even natural numbers — E

21



22 CHAPTER 4. CARDINALITY

Define f : N→ E by f(n) = 2n. This is clearly a bijection and hence |E| = |N|.

4. The rational numbers — Q

This is somewhat surprising and the full proof is rather detailed. A theorem that we offer
without proof helps a great deal in showing that the set of rationals is a countably infinite
set.

Theorem 4.4 (The Schroeder-Bernstein Theorem). Suppose that A and B are sets and that we
have two one-to-one functions, f : A→ B and g : B → A. Then |A| = |B|.

The proof of this theorem is at once elementary (it uses nothing very advanced), interesting,
and complicated.

Remark 4.5. It is useful to compare the sizes of sets. From the Schroeder-Bernstein Theorem
above we see that two sets have the same number of elements if there are one-to-one functions from
each to the other. If we have two sets, A and B, and there is a one-to-one function from A to B,
then the sets might have the same number of elements or B might actually have a larger number
of elements. We will say that |A| ≤ |B| if there is a one-to-one function from A to B. We can then
say that A has fewer elements than B and write |A| < |B| if |A| ≤ |B| but |A| 6= |B|. For example
|{a, b, c}| < |{d, e, f, g, h}|.

Countably infinite sets are often called denumerable or enumerable because they can be num-
bered. That is, if A is a countably infinite set then A = {a1, a2, a3, . . . } where each element of A
appears in the list exactly once. This follows since if A is countably infinite then there is a bijection
f : N → A and we define an = f(n) for each n ∈ N. We will often use this characterization of
countably infinite sets.

On the way to prove that the rational numbers is a countably infinite set we prove the following:

Theorem 4.6. Let U and V be countably infinite sets. Then U × V is countably infinite.

Proof. By Theorem 4.4 it suffices to define two one-to-one functions, one from U → U × V and
one from U × V → U . The first is quite easy. Send uk to (uk, v1) for each k. For the second
function we send (um, vn) to uk where k = Tm+n−1 −m + 1 is the nth triangular number, that is

Tn = 1 + 2 + · · ·+ n = n(n+1)
2 . The first few applications of this function are:

(u1, v1)→ u1,

(u2, v1)→ u2,

(u1, v2)→ u3,

(u3, v1)→ u4,

(u2, v2)→ u5.

We leave the proof that this function is one-to-one to the reader.

Theorem 4.7. The set Q is countably infinite.

Proof. A complete proof is full of pesky details. We give a sketch of a proof. By the previous
theorem the set Z × N = {(p, q) | p ∈ Z, q ∈ N} is a countably infinite set. There is a simple
one-to-one function Q → Z × N given by p

q → (p, q) where we take the fraction to be in lowest
terms and having a positive denominator.
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One of the major mathematical surprises of the Nineteenth Century was the discovery by Georg
Cantor that the real numbers was not a countably infinite set. There are several different proofs
but we will use the Nested Interval Theorem (Theorem 3.11) here.

Theorem 4.8. The set R is uncountable.

Proof. Assume that R is countably infinite, hence we can write R = {x1, x2, x3, . . . } where every
real number occurs exactly once in the list. Let n be the smallest natural number greater than x1.
Then let I1 = [n, n + 1], a non-empty closed interval. Note that x1 6∈ I1. We break the interval
I1 into three pieces of equal length:

[
n, n+ 1

3

]
,
[
n+ 1

3 , n+ 2
3

]
, and

[
n+ 2

3 , n+ 1
]
. At least one of

these intervals does not contain x2. Let the leftmost one of these be I2. Similarly divide I2 into
three equal pieces and let I3 be the leftmost one that does not contain x3. We proceed to define
a non-empty closed interval, Ik, that does not contain xk. Note that I1 ⊃ I2 ⊃ I3 ⊃ · · · . By
the Nested Interval Theorem (Theorem 3.11), there is a real number y that is in every one of the
intervals. But by our assumption that R is countably infinite we know that y = xk for exactly one
natural number k. But then y = xk 6∈ Ik, which is a contradiction.

We will conclude with a result of Cantors that introduces the power set of a set.

Definition 4.9 (Power Set). Let A be a set. The power set of A, P(A), is the set of all subsets of
the set A.

Example 4.10. 1. Let A = {a, b, c}. Then P(A) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, A}.
The set A has 3 elements while P(A) has 23 = 8 elements.

2. The set P(N) is the set of all possible sets of natural numbers, both finite and infinite. It
turns out that |P(N)| = |R|; that is, the number of subsets of the natural numbers is the
same as the number of real numbers.

The next theorem shows us that there are infinitely many different infinities.

Theorem 4.11. Let A be a set. Then there is no onto function from A→ P(A). In other words,
|A| < |P(A)|.

Proof. Suppose that there is an onto function from A to its power set, P(A). Call it f . If x ∈ A
then f(x) is a subset of A. We define the subset X of A as follows:

X = {x ∈ A | x 6∈ f(x)}.

Since f(x) is a subset of A it makes sense to ask whether x is an element of that subset. Since f
is onto there must be a y ∈ A satisfying X = f(y). Is y ∈ X?

Assume that y ∈ X = {x ∈ A | x 6∈ f(x)}. By the definition of X, it follows that y 6∈ f(y) = X,
which is a contradiction.

Thus we must assume that y 6∈ X = f(y). But that is precisely the condition that says y ∈ X.
Thus if y is in the set, then it is not in the set, and vice-versa. Thus no such onto function can
exist.

By continually forming power sets, starting with the natural numbers, one produces an infinite
sequence of ever larger infinite sets:

|N| < |P(N)| < |P(P(N))| < · · · .
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4.1 Exercises

Exercise 4.1. Find an explicit one-to-one and onto function from 3Z = {· · · ,−6,−3, 0, 3, 6, · · · }
to N. That means find a formula for such a function and show that it is both one-to-one and onto.

Exercise 4.2. Let U = {x1, x2, . . . } and V = {y1, y2, . . . } be disjoint, countably infinite sets.
Prove that U ∪V is countably infinite. Is the statement still true if the word “disjoint” is removed?
Why or why not?

Exercise 4.3. Show that the function which sends (um, vn) to uk where k = Tm+n−1 + m − 1 in
Theorem 4.6 is actually one-to-one.

Exercise 4.4. One can prove that the real numbers are uncountable using what is called “the
diagonal argument”. Suppose we apply the same argument to the rational numbers lying between
0 and 1. Call that set S, so that S = {x ∈ Q | 0 < x < 1}.

Now assume we have an onto function from N to S, in other words a listing of all
the rational numbers in S. As in the diagonal argument let S = {q1, q2, . . . } and let
each element of S be expressed as a decimal expansion and if the decimal expansion is
terminating change it to a decimal expansion which ends with an infinite sequence of
9s. Now change the kth decimal place of qk by adding 1 if the digit is less than 9 and
making it 8 if it is 9. Call the new digit yk. Now form the number 0.y1y2y3 · · · . By the
construction this number is not in the list of S. Thus no such onto function exists.

This should show that the rationals are uncountable. What is wrong with this argument?

Exercise 4.5. Let X = {x ∈ (0, 1) | x has a decimal expansion of 1s, 3s, 5s}. Prove that X is
uncountable.

Exercise 4.6. Let Y denote the set of numbers in (0, 1) with a decimal expansion that contains
only 0s and 1s, and only finitely many 0s. Decide if you think Y is countably infinite or uncountable.
Then prove that your decision is the correct one.

Exercise 4.7. Let f : [0,∞)→ R be defined by f(x) = x2. Prove in detail that f is one-to-one.

Exercise 4.8. Let A = {n ∈ N | 10 < n2 + 2 < 200}. Find |A|, the cardinality of A.

Exercise 4.9. Let each x ∈ [0, 1] be represented as x = 0.x1x2x3 · · · , its decimal expansion, where
rational numbers which have terminating expansions, other than 0, are given the representation
that ends in infinitely many consecutive 9s. Thus 1 = 0.99999 · · · and 1

4 = 0.249999 · · · . Define
f : [0, 1] → [0, 1] × [0, 1] by f(x) = ((x1, x3, x5, . . . ), (x2, x4, x6, . . . )). Prove that f is one-to-one
and onto and hence that [0, 1] and [0, 1]× [0, 1] have the same cardinality.



Chapter 5

Sequences and Series

5.1 Sequences

A very useful object for the study of the real numbers is the sequence. We think of a sequence as
a set of real numbers indexed by the natural numbers. Sequences allow us to use countable sets to
explore uncountable sets and functions on uncountable sets.

Example 5.1 (Sequences).

1.
{

1, 12 ,
1
3 , . . . ,

1
n , . . .

}
,
{
an = 1

n for all n ∈ N
}

2.
{

1, 2, 4, 8, . . . , 2n−1, . . .
}

, {an = 2n−1 for all n ∈ N}

3. {−1, 1,−1, 1,−1, 1, . . . }, {an = (−1)n for all n ∈ N}

4.
{

1, 12 ,
2
3 ,

3
5 ,

5
8 , . . .

}
, {an =?}

5. {3, 3.1, 3.14, 3.141, 3.1415, . . . }, {an =?}

We generally define sequences in one of two ways, either by a functional formula or by a
recursive formula. Examples 1., 2., and 3. are all given by function formulas. Example 4. is given
in a different fashion. Let a1 = 1. Then we define each successive term by applying a formula
to the preceding element of the sequence as follows: an+1 = 1

1+an
. Thus a2 = 1

1+a1
= 1

1+1 = 1
2

and a3 = 1
1+a2

= 1
1+ 1

2

= 2
3 . We can give a functional formula for this sequence but it involves the

sequence of Fibonacci numbers, Fn, namely an = Fn
Fn+1

. More on this later. The fifth sequence
comes from the decimal expansion of π.

Now we give the definition of a sequence.

Definition 5.2 (A Sequence of Real Numbers). A sequence of real numbers is a function, f , from
the natural numbers to the real numbers. That is, f : N→ R.

How does this definition fit with our examples? If we let an = f(n) we have our examples,
sometimes with a very simple f and sometimes a complicated one.

We usually denote a sequence in one of the following ways:

{an | n ∈ N}, {an}, {f(n)}, or {an = f(n)}.

Often it is convenient to change the indexing slightly and start a sequence with a zeroth term.

{a0, a1, a2, . . . }

25
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The most important question to answer about a sequence is whether or not it converges. The
following defines what is meant by the convergence of a sequence. A sequence converges if the
sequence has a limit. Sequential limits are the simplest limits we will encounter in Real Analysis.

Definition 5.3 (Sequence Convergence). Let {an | n ∈ N} be a sequence of real numbers. We say
that {an} converges to real number L or that the limit of an as n approaches infinity is L, written
limn→∞ an = L, if for each ε > 0 there is a natural number N (depending on ε) such that if n ≥ N
then |an − L| < ε.

Proposition 5.4. If limn→∞ an = L then limn→∞ an+1 = L.

Proof. Let ε > 0 be given. Since limn→∞ an = L there is a natural number N such that if n ≥ N
then |an − L| < ε. The nth term of the sequence {an+1} is an+1, hence if n ≥ N then n+ 1 ≥ N .
Thus |an+1 − L| < ε.

Example 5.5.

1. limn→∞ 1
n = 0

Note that the sequence in this example is {an} =
{

1
n

}
=
{

1, 12 ,
1
3 , . . .

}
. Now suppose that ε > 0

is an arbitrary real number. Our task is to find a natural number, N , which realizes the definition
of convergence. The value of N will depend on ε.

We need to satisfy the following inequality for all n ≥ N :

|an − L| =
∣∣∣∣ 1n − 0

∣∣∣∣ =

∣∣∣∣ 1n
∣∣∣∣ =

1

n
< ε.

This is equivalent to 1
ε < n. Thus we choose N to be any natural number satisfying N > 1

ε . If
n ≥ N then n ≥ N > 1

ε , or
∣∣ 1
n − 0

∣∣ = 1
n < ε.

Let’s see how this works if we had a value for ε in mind. Suppose ε = 0.14. We need to choose
a natural number N satisfying N > 1

0.14 = 7.142857 · · · . Let N = 10. (We might have chosen 8, 9,
or 12345.) Then if n ≥ N it follows that 1

n < 0.14. Check it out:

a11 =
1

11
= 0.090909 · · · ,

a12 =
1

12
= 0.083333 · · · ,

a13 =
1

13
= 0.076923 · · · , and so on.

For each n > 10, it is indeed true that |an−L| = 1
n < 0.14 = ε. We’ve developed a formula so that

when an ε is chosen, we know how to calculate N .

2. limn→∞ 2n2+3
n2−2 = 2

We first make a computation to determine N in terms of ε.∣∣∣∣2n2 + 3

n2 − 2
− 2

∣∣∣∣ =

∣∣∣∣2n2 + 3

n2 − 2
− 2(n2 − 2)

n2 − 2

∣∣∣∣ =

∣∣∣∣ 7

n2 − 2

∣∣∣∣ =
7

n2 − 2
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The above calculations are true except if n = 1, when
∣∣∣2n2+3
n2−2 − 2

∣∣∣ equals 7. Our task is to make

this quantity less than ε.

7

n2 − 2
< ε

7

ε
< n2 − 2

2 +
7

ε
< n2

Finally, we need n >
√

2 + 7
ε . Thus choose N to be any natural number satisfying N >

√
2 + 7

ε .

Proof. Let ε > 0 be given. Choose N to be a natural number such that N >
√

2 + 7
ε . If n

is a natural number satisfying n ≥ N , then n >
√

2 + 7
ε or equivalently (by our computation)∣∣∣2n2+3

n2−2 − 2
∣∣∣ =

∣∣∣ 7
n2−2

∣∣∣ < ε.

Remark 5.6. What does this definition “mean”? One way to look at the definition is to see that
it deals with parts of sequences, namely the part of a sequence that leaves out some initial terms.
Suppose that {an} = {a1, a2, a3, . . . } is a sequence and N = 10. The “infinite tail” of the given
sequence represented by {aN , aN+1, . . . } = {a10, a11, a12, . . . } simply leaves out the first 9 terms
{a1, a2, . . . , a9}. Our definition says that given a positive number ε there is an infinite tail of the
sequence all of whose terms are contained in the set (L− ε, L+ ε). Thus if N is chosen for a given
ε then we know that {aN , aN+1, aN+2, . . . } ⊂ (L − ε, L + ε). All but the first N1 terms of the
sequence are within ε of the limit L. This works no matter how small ε might be (that is if the
limit exists).

Suppose that for our second example we are given ε = 0.002. We choose N satisfying

N >

√
2 +

7

0.002
=
√

2 + 3500 = 59.1777 · · · .

Let N = 70. Then we know that

{a70, a71, a72, . . . } = {2.00143 · · · , 2.00139 · · · , 2.00135 · · · , . . . } ⊂ (L− ε, L+ ε) = (1.998, 2.002).

We come to a theorem that seems obvious. However, in our definition of limit of a sequence the
equals sign is just one symbol in the denotation limn→∞ an = L, not necessarily an actual equal
sign. The following theorem proves that it is an equal sign.

Theorem 5.7 (Uniqueness of Limits). Suppose that limn→∞ an = L and limn→∞ an = M . Then
L = M .

Proof. If the sequence converges, it cannot simultaneously be getting arbitrarily closer and closer
to two different numbers.

Let us assume that both limits hold but that L 6= M . Let ε = |L−M |
2 > 0. Since limn→∞ an = L

there is a natural number N1 such that if n ≥ N1 then |an − L| < ε. Similarly there is a natural
number N2 such that if n ≥ N2 then |an −M | < ε. Let N be the larger of N1 and N2. By the
triangle inequality we have the following:

2ε = |L−M | = |(L− an)− (M − an)| ≤ |an − L|+ |an −M | < ε+ ε = 2ε.
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Thus we have ε < ε but no number can be less than itself. Thus we contradict the assumption that
L 6= M .

An alternate way to prove the theorem is to take the sequence element, aN , chosen as above
and note that it is within ε of both L and M which are 2ε apart, which is impossible.

Definition 5.8 (Boundedness). A sequence, {an}, is said to be bounded above if there is a real
number M satisfying an ≤ M for all n ∈ N. The number M is called an upper bound of the
sequence. A sequence, {an}, is said to be bounded below if there is a real number L satisfying
L ≥ an for all n ∈ N. A sequence is bounded if it is bounded above and bounded below. This
quickly translates to the fact that a sequence is bounded if all its terms are contained in a closed
interval, [L,M ], for a lower bound L and upper bound M .

Theorem 5.9. If a sequence converges, then it is bounded.

Proof. Suppose that limn→∞ an = L. We need to show that the sequence is bounded. Consider the
case in which ε = 1. There is a natural number, N , such that if n ≥ N then |an − L| < 1. This is
equivalent to the inequalities L−1 < an < L+1. Thus the part of the sequence starting at the Nth
term is bounded below by L1, and bounded above by L+ 1. Among the terms {a1, a2, . . . , aN−1},
there may be some that do not lie within these bounds.

Let A = min{a1, a2, . . . , aN−1, L− 1} and B = max{a1, a2, . . . , aN−1, L+ 1}. Then A is a lower
bound for the sequence and B is an upper bound.

This theorem serves as a quick criterion for the non-convergence of some sequences. If a sequence
is unbounded then it is divergent. Thus {0, 1, 0, 2, 0, 3, 0, 4, . . . } is divergent. Boundedness does not
imply convergence, however. A very useful sequence is {(−1)n} = {−1, 1,−1, 1,−1, 1, . . . } which
is a bounded sequence but not convergent.

Actual computation of limits of sequences is often important. The following theorem is a
valuable tool in these computations.

Theorem 5.10 (Algebraic Combinations of Limits). Suppose that limn→∞ an = L, limn→∞ bn =
M , and c is a real number. Then:

(1) limn→∞(an ± bn) = L±M
(2) limn→∞ can = cL

(3) limn→∞ anbn = LM

(4) If M 6= 0 then limn→∞ an
bn

= L
M .

Proof. We will prove (1) and (3). Part (2) is quite simple to prove while (4) is very messy.
For (1), it does not matter whether we have the plus or minus sign. The proof will be the same.

We will assume the plus sign.
Let ε > 0 be given. Since limn→∞ an = L there is a natural number N1 which satisfies the

condition that if n ≥ N1 then |an−L| < ε
2 . (We apply the definition for ε

2 rather than ε.) Similarly,
since limn→∞ bn = M there is a natural number N2 such that if n ≥ N2 then |bn −M | < ε

2 . Now
let N = max{N1, N2}. Hence if n ≥ N then n ≥ N1 and n ≥ N2. We use the triangle inequality to
finish the proof. Assume that n ≥ N . Then

|(an + bn)− (L+M)| = |(an − L) + (bn −M)|
≤ |(an − L)|+ |(bn −M)|
<
ε

2
+
ε

2
= ε.
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For (3): Let ε > 0 be given. Since the sequence {bn} converges, it is bounded. Assume that
|bn| < K for some real number K and all natural numbers, n. We now make some mysterious
choices reasons for which will become clear. Since {an} converges to L, there is a natural number
N1 such that if n ≥ N1 then |an − L| < ε

2(K+1) . Since {bn} converges to M , there is a natural

number N2 such that if n ≥ N2 then |bn −M | < ε
2(|L|+1) . Now let N be the larger of N1 and N2.

Assume that n ≥ N . Then

|anbn − LM | = |anbn − bnL+ bnL− LM |
≤ |anbn − bnL|+ |bnL− LM |
= |an − L||bn|+ |L||bn −M |.

By the way we have chosen N we have

|anbn − LM | ≤ |an − L||bn|+ |L||bn −M |

<

(
ε

2(K + 1)

)
K + |L|

(
ε

2(|L|+ 1)

)
<
ε

2
+
ε

2
= ε.

The proofs of (1) and (2) are easier and the proof of (4) resembles that of (3) except that it is much
more complicated.

Theorem 5.11. Let limn→∞ an = L and limn→∞ bn = M , and let c be a real number.

(1) If an ≤ bn for all n greater than some natural number N then L ≤M .

(2) If an ≤ c for all n greater than some natural number N then L ≤ c.

(3) If an ≥ c for all n greater than some natural number N then L ≥ c.

Proof. We actually only need to prove (1) since the others follow from the prior theorem. Suppose
that L > M in violation of the theorem. Let ε = L−M

2 > 0. Since both sequences converge we can
find a natural number K that satisfies the following conditions:

• K ≥ N ,

• for all k ≥ K, |ak − L| < ε
2 , and

• for all k ≥ K, |bk −M | < ε
2 .

Thus |aK −L| < ε
2 and |bK −M | < ε

2 . These inequalities are equivalent to L− ε
2 < aK < L+ ε

2
and M − ε

2 < bK < M + ε
2 . We also have M = L− 2ε. Putting all these together yields:

bK < M +
ε

2
= L− 2ε+

ε

2
= L− 3ε

2
< L− ε

2
< aK .

This contradicts the assumption that an ≤ bn for all n.

Corollary 5.12. Suppose that limn→∞ an = 0. Then for a given positive real number M there is
a natural number N such that if n ≥ N then |an| ≤M .
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Proof. This is a very innocent sounding result but a very useful one nonetheless. Let ε = M
2 > 0.

Since limn→∞ an = 0, there is a natural number N such that if n ≥ N then

|an − 0| < ε =
M

2
< M.

The following theorem is known in several different contexts by several different names. For
example: The Pinching Lemma, The Squeezing Theorem, The Pinching Theorem, etc.

Theorem 5.13 (The Pinching Lemma). Suppose that the following holds for three given sequences:
an ≤ bn ≤ cn for all n ≥ K for some natural number K. Further suppose that limn→∞ an =
limn→∞ cn = L. Then limn→∞ bn = L.

Proof. Let ε > 0 be given. By the two given limits there exist natural numbers N1 and N2 satisfying
the following:

• if n ≥ N1 then |an − L| < ε
2 , and

• if n ≥ N2 then |cn − L| < ε
2 ,

Let N = max{N1, N2,K}. Let n ≥ N . Then L − ε
2 < an ≤ bn ≤ cn < L + ε

2 , which gives
|bn − L| < ε

2 < ε. Thus limn→∞ bn = L.

Theorem 5.14. (1) limn→∞ 1
n = 0

(2) If |a| < 1 then limn→∞ an = 0.

(3) If a > 0 then limn→∞ a1/n = 1.

The proofs of these important facts will be given later. Actually (1) has already been proven
in an example.

We now embark on an important journey through the theory of sequences. We have defined
convergence of a sequence but our definition of convergence requires that we know the limit of the
sequence, namely the real number L in limn→∞ an = L. In what follows we will consider how
to deal with a sequence where no such limit, L, is given and indeed may not exist. This will
require several new concepts — a monotone sequence, a subsequence of a given sequence, and two
important theorems: The Monotone Convergence Theorem and the Bolzano-Weierstrass Theorem.
We end this particular journey with the definition of a Cauchy sequence and prove that Cauchy
sequences and convergent sequences are the same.

Definition 5.15 (Monotone Sequences). A sequence {an} is said to be increasing (decreasing) if
an ≤ an+1 (an ≥ an+1) for all natural numbers n. A sequence is called monotone or monotonic if
it is either an increasing or a decreasing sequence.

Remark 5.16. Sometimes what we have defined is called non-decreasing and increasing is used
when the inequality is strict. It turns out that for our purposes the distinction is irrelevant.

It turns out that being monotone is a very powerful property for a sequence. The following
theorem displays this power.

Theorem 5.17 (Monotone Convergence Theorem). Suppose that {an} is an increasing sequence
that is bounded above (or decreasing and bounded below). Then {an} converges.
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Proof. Since {an} is increasing, a1 ≤ a2 ≤ · · · ≤ an ≤ an+1 ≤ · · · ≤ M for some real number M .
Then the set of terms of the sequence {an | n ∈ N} is a non-empty set that is bounded above. Thus
it has a least upper bound. Call that number L. We claim that limn→∞ an = L.

Let ε > 0 be given. By the criterion for least upper bounds (Theorem 2.12), there is an x ∈ {an}
such that L − ε < x. Now x = aN for some natural number N . If n ≥ N then aN ≤ an ≤ L.
Thus 0 ≤ L− an < ε or |an − L| < ε. Thus limn→∞ an = L. The proof for the other case uses the
criterion for greatest lower bounds.

Before moving on we will apply this theorem to the proof of Theorem 5.14.(2), that is if |a| < 1
then limn→∞ an = 0.

Proof. Assume a > 0. (The case a = 0 is trivial.) The sequence {a, a2, a3, . . . } is a decreasing
sequence and is bounded below by 0. Thus it has a limit c. By Proposition 5.4 we have that
limn→∞ an+1 = limn→∞ an = c. By Theorem 5.10, limn→∞ an+1 = limn→∞ a · an = a limn→∞ an.
Combining these two results gives us that ac = c. Since a < 1 it follows that c = 0.

Now for the case that a < 0. Notice a = −|a|. Thus −|a|n ≤ an ≤ |a|n. Then limn→∞ |a|n = 0
by the first part of our proof. Theorem 5.10 allows for limn→∞−|a|n = − limn→∞ |a|n = −0 = 0.
By the Pinching Lemma (Theorem 5.13), limn→∞ an = 0.

The other crucial new idea is that of a subsequence of a sequence.

Definition 5.18 (Subsequence of a Sequence). Let {an} be a sequence of real numbers and let i1 <
i2 < i3 < · · · be an increasing sequence of natural numbers. The sequence {aik} = {ai1 , ai2 , . . . } is
a subsequence of {an}.
Example 5.19.

1. Let {an} =
{

1
n

}
=
{

1, 12 ,
1
3 ,

1
4 , . . .

}
. The following are subsequences of this sequence.{

1

2
,
1

3
,
1

4
, . . .

}
= {an+1}{

1

2
,
1

4
,
1

6
, . . .

}
= {a2n}{

1,
1

2
,
1

4
,
1

8
, . . .

}
= {a2n−1}{

1,
1

4
,
1

9
, . . .

}
= {an2}

For different reasons the following are not subsequences of this sequence.{
1,

1

2
,
1

2
,
1

3
, . . .

}
,

{
1

2
, 1,

1

4
,
1

3
, . . .

}
,

{
0, 1,

1

2
, . . .

}
2. Let {an} = {(−1)n} = {−1, 1,−1, 1,−1, 1, . . . }. Examples of subsequences include the fol-

lowing.
{1, 1, 1, 1, 1, 1, . . . }

{1,−1, 1,−1, 1,−1, . . . }
{−1, 1,−1, 1, 1,−1, 1, 1, 1,−1, 1, 1, 1, 1, . . . }
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Theorem 5.20. If limn→∞ an = L then limn→∞ ain = L for every subsequence of the original
sequence.

Proof. Given ε > 0 there is a natural number N such that if n ≥ N , then |an−L| < ε. Let K = iN ,
the index of the Nth term of the subsequence. Then if n ≥ K = iN ≥ N we have iN ≥ n ≥ N and
|ain − L| < ε.

The next theorem, which turns out to be equivalent to the Completeness Axiom (Axiom 6),
will provide us with a candidate for the limit of a sequence when such a limit is unknown.

Theorem 5.21 (The Bolzano-Weierstrass Theorem). Every bounded sequence contains a conver-
gent subsequence.

Proof. Let {an} be a bounded sequence. In particular suppose that M is a positive real number
satisfying |an| ≤M for every natural number n. Thus all the terms of the sequence are contained
in the closed interval [−M,M ]. Call this interval I1. An infinite number of the terms of the given
sequence are in either [−M, 0] or [0,M ]. If not the sequence would have at most finitely many
terms and would not even be a sequence. Note that a constant sequence like {1, 1, 1, 1, . . . } has
an infinite number of terms, all of them equal to 1. Let I2 be [−M, 0] if that interval contains
infinitely many terms of the sequence and if not let I2 = [0,M ]. We proceed to define a sequence
{Ik} of non-empty closed intervals as follows. Given In we divide it into two closed intervals using
the midpoint of the interval as an endpoint. One of these intervals (at least one) contains infinitely
many terms of the sequence. Let In+1 be the left-most of these intervals. We have thus constructed
a nested sequence of non-empty closed intervals:

I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ In+1 ⊃ · · · .

By the Nested Interval Theorem (Theorem 3.11) we know that there is a real number x contained
in the intersection of these intervals. Thus x ∈ In for every natural number n. Notice that the
length of I1 is 2M and each successive interval has half the length of the preceding one. Thus
the length of In is M

2n−2 . Now we choose the appropriate subsequence. Let ai1 = a1. Let ai2 be
any term of the sequence lying in interval I2 with i2 > i1 = 1. We continue on letting aik be any
sequence element in Ik with ik > ik−1. This gives us a subsequence of the original sequence which
we claim converges to x. Let ε > 0 be given. Since limn→∞ M

2n−2 = 0, there is a natural number
N such that the length of interval IN is less than ε. The number x is also in this interval. Every
subsequential element ain is also in In if n ≥ N . Thus if n ≥ N we have |ain − x| < ε. Thus we
have limn→∞ ain = x.

We have defined a convergent sequence as one in which all the terms eventually approach a
particular number called the limit of the sequence. There is a related notion for a sequence in
which the terms approach each other instead of a single number. We will show that the two
notions are equivalent. These sequences are called Cauchy sequences.

Definition 5.22 (A Cauchy Sequence). A sequence {an} is called Cauchy or a Cauchy Sequence
if for each ε > 0 there is a natural number N such that if m,n ≥ N then |am − an| < ε.

It is useful to compare the wording of the definition of a convergent sequence (Definition 5.3)
and that of a Cauchy sequence (Definition 5.22). What are the differences in the two definitions?

Theorem 5.23. A sequence is Cauchy if and only if it is convergent.
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Proof. First we prove that a convergent sequence is Cauchy. Suppose that limn→∞ an = L. Let
ε > 0 be given. Then there is a natural number N such that if n ≥ N then |an − L| < ε

2 . Now
assume that m,n ≥ N . Then

|am − an| = |am − L+ L− an| ≤ |am − L|+ |an − L| <
ε

2
+
ε

2
= ε.

The sequence is Cauchy.
What holds us back from proving the theorem in the other direction is that we dont know that

L exists. We know that the terms of the sequence are getting closer to each other but we dont
know that there is a number L that they are getting close to. This is where the Bolzano-Weierstrass
Theorem (Theorem 5.21) comes in. We now prove that every Cauchy sequence is convergent.

Suppose {an} is a Cauchy sequence. We prove that it is also bounded so that we can use
the previous theorem. Let ε = 1. There is a natural number N such that if m,n ≥ N then
|am − an| < 1. Let A = min{a1, a2, . . . aN−1, aN − 1} and B = max{a1, a2, . . . , aN−1, aN + 1}.
Then the entire sequence is contained in [A,B], and hence bounded. The original sequence has a
convergent subsequence {ain}. Suppose it converges to a. Let ε > 0 be given. There is a natural
number K such that if in ≥ K then |ain − a| < ε

2 . There is also a natural number L such that if
m,n ≥ L then |am − an| < ε

2 since we started with a Cauchy sequence. Now let N be the larger of
K and L. Then if n ≥ N we have

|an − a| = |an − aN + aN − a| ≤ |an − aN |+ |aN − a| <
ε

2
+
ε

2
= ε.

We have convergence.

The notion of a Cauchy sequence is very important. It was used in one of the first actual defi-
nitions of the set of real numbers. A real number was defined (by Georg Cantor) as an equivalence
class of Cauchy sequences of rational numbers. For us a more immediate application of Cauchy
sequences will be in the development of infinite series, a special form of a sequence.

5.2 Series

Infinite series are particularly useful examples of sequences which we now define. We will introduce
several important convergence tests and the notion of absolute convergence.

Definition 5.24 (Infinite Series). Let {an} be a sequence of real numbers. Let sn = a1 +a2 + · · ·+
an =

n∑
k=1

ak. The number sn is called the n-th partial sum of the sequence. The sequence {sn} is

called an infinite series and denoted by
∞∑
k=1

ak. If limn→∞ sn exists, that is {sn} converges, then

we say the infinite series converges. If limn→∞ sn = s, we write
∞∑
k=1

ak = s and call s the sum of

the series.

Remark 5.25. It is important to keep in mind that the symbol
∞∑
k=1

ak is simply the name of the

sequence {sn} of partial sums. To write
∞∑
k=1

ak = s does not mean that we have added all the terms

of the original sequence. We can only add finitely many numbers. The number s represents a limit
of finite sums. There are very good reasons for not viewing an infinite series as a sum of infinitely
many terms but we will get to that later.
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Example 5.26 (A Telescoping Series). Consider
∞∑
k=1

1
k2+k

. This is the infinite series derived from

the sequence {an} =
{

1
n2+n

}
. What is sn?

The first few terms of {an} =
{

1
n2+n

}
are

{
1
2 ,

1
6 ,

1
12 ,

1
20 ,

1
30 , . . .

}
=
{

1
1·2 ,

1
2·3 ,

1
3·4 ,

1
4·5 , . . .

}
. We

compute the first few partial sums:

s1 = a1 =
1

2

s2 = a1 + a2 =
1

2
+

1

6
=

2

3

s3 = a1 + a2 + a3 = s2 + a3 =
1

2
+

1

6
+

1

12
=

2

3
+

1

12
=

3

4

s4 = s3 + a4 =
3

4
+

1

20
=

4

5

If we generalize from the pattern (this is not a proof) we would say that sn = n
n+1 . If this is true

then
∞∑
k=1

1
k2+k

= limn→∞ sn = limn→∞ n
n+1 = 1. The proof depends on the fact that

an =
1

n2 + n
=

1

n(n+ 1)
=

1

n
− 1

n+ 1
,

which is easy to check. Then

sn = a1 + · · ·+ an

=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·+

(
1

n− 1
− 1

n

)
+

(
1

n
− 1

n+ 1

)
= 1− 1

n+ 1
=

n

n+ 1
.

Our next example and theorem introduce the most important of all infinite series and give a
complete description of its convergence.

Example 5.27 (The Geometric Series). In this example our sequence begins with index 0, that
is {an} = {a0, a1, a2, . . . }. Let x be a real number. Define an = xn for n = 0, 1, 2, . . . . We are

interested in the infinite series
∞∑
k=0

xk, called a geometric series. Notice that for a fixed value of x

we have sn = 1 + x+ x2 + · · ·+ xn.

If x = 1 then sn = 1 + 1 + · · ·+ 1 = n+ 1. The sequence {sn} of partial sums is just {n+ 1}.
Clearly lims→∞ sn = limn→∞ n + 1 is not a finite number. Thus the geometric series diverges if
x = 1.

We now assume that x is different from 1. Then

(1− x)sn = (1− x)(1 + x+ x2 + · · ·+ xn) = 1− xn+1.
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Thus we have sn = 1−xn+1

1−x , which is defined since x 6= 1. Then if it exists,

∞∑
k=0

xk = lim
n→∞

(
1− xn+1

1− x

)
=

1− limn→∞ xn+1

1− x .

Theorem 5.14 tells us that limn→∞ xn+10 if |x| < 1. It is easy to see that the limit does not exist
if we have x = −1 or |x| > 1. Thus we have:

∞∑
k=0

xk =

{
1

1−x if |x| < 1

diverges if |x| ≥ 1
.

Proposition 5.28. For any integer m,
∞∑
k=m

xk =

{
xm

1−x if |x| < 1

undefined if |x| ≥ 1
.

Proof. We are given an integer m, which represents the power of x in the leading term of the series.
We compute the nth partial sum of the series:

sn = xm + xm+1 + xm+2 + · · ·+ xm+n = xm(1 + x+ · · ·+ xn).

By our work on the geometric series we know that this sequence of partial sums, {sn}, diverges if
|x| ≥ 1. The partial sums will converge if |x| < 1. What is the limit? As sn = xm(1 +x+ · · ·+xn),
thus the partial sums converge to xm

1−x in this case.

Theorem 5.29. Let
∞∑
k=1

ak and
∞∑
k=1

bk be convergent series converging to A and B respectively and

let c be a real number. Then:

(1)
∞∑
k=1

(ak + bk) = A+B, and

(2)
∞∑
k=1

cak = cA.

Proof. (1) Let sn = a1 + · · ·+ an and tn = b1 + · · · bn be the nth partial sums of
∞∑
k=1

ak and
∞∑
k=1

bk

respectively. Thus limn→∞ sn = A and limn→∞ tn = B. Let un = (a1 + b1) + · · ·+ (an + bn) be the

nth partial sum of the series
∞∑
k=1

(ak + bk). Since this is a finite sum we can apply commutativity

and associativity to yield un = sn + tn. In other words,

(a1 + a2 + · · ·+ an) + (b1 + b2 + · · ·+ bn) = (a1 + b1) + (a2 + b2) + · · ·+ (an + bn).

Using the limit laws from Theorem 5.10, A+B = limn→∞ sn+limn→∞ tn = limn→∞ un =
∞∑
k=1

(ak+

bk).

(2) The proof here is accomplished by using distributivity on the partial sums of
∞∑
k=1

cak.
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Remark 5.30. No result like Theorem 5.29 holds for series of the form
∞∑
k=1

akbk. There are examples

for which
∞∑
k=1

ak and
∞∑
k=1

bk both converge while
∞∑
k=1

akbk diverges and examples of just the opposite,

that is
∞∑
k=1

ak and
∞∑
k=1

bk both diverge while
∞∑
k=1

akbk converges.

Theorem 5.31 (The Cauchy Convergence Criterion). Let
∞∑
k=1

ak be an infinite series. Then
∞∑
k=1

ak

converges if and only if for each ε > 0 there is a natural number N such that if n > m ≥ N then
|am+1 + am+2 + · · · an| < ε.

Proof. Let {sn} be the sequence of partial sums of the sequence {ak}. Now assume that
∞∑
k=1

ak

converges. This is equivalent to the sequence {sn} being convergent. But being convergent and
being Cauchy are equivalent (Theorem 5.23). Thus {sn} is also a Cauchy sequence. This is
equivalent by definition to the following condition: given ε > 0, there is a natural number N such
that if n > m ≥ N then |sn − sm| < ε. What is |sn − sm|?

|sn − sm| = |(a1 + a2 + · · ·+ an)− (a1 + a2 + · · ·+ am)| = |(am+1 + am+2 + · · ·+ an|

Thus |am+1 + am+2 + · · ·+ an| < ε. Similarly if the series diverges, the sequence of partial sums is
not Cauchy and the condition is not satisfied.

Convergence Tests

An interesting and surprising fact that is reasonably hard to prove is that
∞∑
k=1

1
k2

= π2

6 . The

problem of determining to what number this series converges is called “the Basel problem”, which
was posed originally in the 1600s. Euler solved this problem in the 1700s by establishing the
equality described. There are many interesting proofs for this fact with rich interactions of Number
Theory and Analysis. Oftentimes, though, the real problem is to determine convergence of a series.
Its value will come from some other source. The next several theorems develop convergence tests
for series. Some of the tests tell immediately if a series converges or diverges but only rarely does
a test say what the sum of the series actually is. Some of the tests only say that a series diverges,
and are indeterminate for many series.

Many of the proofs of these tests are left to the exercises at the end of the chapter.

Theorem 5.32 (The Comparison Tests). Suppose that {an} and {bn} are sequences of non-negative
real numbers. Further suppose that for some natural number N if n ≥ N then an ≤ bn. Then:

(1) If
∞∑
k=1

ak diverges then
∞∑
k=1

bk diverges.

(2) If
∞∑
k=1

bk converges then
∞∑
k=1

ak converges.

Proof. For (2): We are assuming that 0 ≤ an ≤ bn for all n ≥ N . Since
∞∑
k=1

bk converges we can

use the Cauchy criterion from Theorem 5.31. Given ε > 0, there is a natural number M satisfying
N ≤M and if n > m ≥M then |bm+1+bm+2+· · ·+bn| < ε. Since all the numbers are non-negative
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we have bm+1 + bm+2 + · · · bn = |bm+1 + bm+2 + · · ·+ bn| < ε. By our assumption on the sequences
we also have

am+1 + am+2 + · · ·+ an ≤ bm+1 + bm+2 + · · · bn.
This gives us

|am+1 + am+2 + · · ·+ an| = am+1 + am+2 + · · ·+ an

≤ bm+1 + bm+2 + · · · bn
= |bm+1 + bm+2 + · · ·+ bn|
< ε.

Hence
∞∑
k=1

ak converges by the Cauchy criterion. The statement in (2) is just the contrapositive of

the statement in (1) so it is also true.

Theorem 5.33. If
∞∑
k=1

ak converges, then limn→∞ an = 0.

Proof. Let {sn} be the sequence of partial sums of the sequence {ak}. Since
∞∑
k=1

ak converges so does

the sequence {sn}. Let limn→∞ sn = s. Then we also have limn→∞ sn+1 = s and limn→∞ sn+1−s =
s− s = 0. But sn+1 − sn = an+1. Thus we have limn→∞ an+1 = limn→∞ an = 0.

Note that the converse of this theorem does not hold. Consider the series
∞∑
k=1

1
k which diverges

but whose terms converge to 0. This theorem is the basis for what is sometimes called the “Negative

Test” or the “Divergence Test”: Given an infinite series,
∞∑
k=1

ak, if limn→∞ an 6= 0 then the series

diverges. This test never proves convergence.

Theorem 5.34 (The p-Test). The series
∞∑
k=1

1
kp converges if p > 1 and diverges otherwise. In

particular, the Harmonic Series,
∞∑
k=1

1
k diverges while

∞∑
k=1

1
k2

converges.

Proof. The easiest proof of this theorem uses the Integral Test. Since we have yet to define an inte-
gral we will prove this result using the Geometric Series and the Comparison Test (Theorem 5.32).

First we assume that p > 1. In the series
∞∑
k=1

1
kp we are going to replace many terms with larger

terms. For example we will replace 1
3p with 1

2p , which is larger, and 1
5p , 1

6p , 1
7p each with 1

4p , which
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is again larger. This results in the following:

1

1p
+

1

2p
+

1

3p
+

1

4p
+

1

5p
+

1

6p
+

1

7p
+

1

8p
+ · · · < 1

1p
+

1

2p
+

1

2p
+

1

4p
+

1

4p
+

1

4p
+

1

4p
+

1

8p
+ · · ·

=
1

1p
+

2

2p
+

4

4p
+

8

8p
+ · · ·

= 1 +
1

2p−1
+

1

4p−1
+

1

8p−1
+ · · ·

= 1 +

(
1

2p−1

)
+

(
1

2p−1

)2

+

(
1

2p−1

)3

+ · · ·

=

∞∑
k=1

(
1

2p−1

)k
.

Since p > 1 it follows that
(

1
2p−1

)
< 1 and hence the Geometric Series

∞∑
k=1

(
1

2p−1

)k
converges. The

original series thus converges by the Comparison Test (Theorem 5.32).

Next we consider the case p = 1. This series is called the Harmonic Series:
∞∑
k=1

1
k . We will

show this series diverges using a similar kind of replacement of terms as in the case for p > 1.

Instead of rounding 2k terms of the infinite series up to the nearest
(

1
2p

)k
, creating intermediate

sums of
(

1
2p−1

)k−1
and resulting in a Geometric Series, we’ll round 2k−1 terms down to 1

2k
and

create intermediate sums of 1
2 . We will consider the partial sums of this series. Let sn =

n∑
k=1

1
k =

1 + 1
2 + · · ·+ 1

n .

s1 = 1

s2 = 1 +
1

2
=

3

2

s4 = 1 +
1

2
+

1

3
+

1

4
> 1 +

1

2
+

1

4
+

1

4
= 2,

after replacing 1
3 with the smaller 1

4 . After replacing 1
5 , 1

6 , 1
7 with the smaller 1

8 , we estimate s8:

s8 = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8

> 1 +
1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8

= 1 +
1

2
+

1

2
+

1

2
=

5

2
.

Using induction, one can flesh out the details to prove that s2n ≥ n+2
2 for all n ∈ N. Thus the

sequence of partial sums sn is unbounded and hence the Harmonic Series must diverge.

Assume that 0 < p < 1. Then for every positive integet n, we see 1
n ≤ 1

np and hence the series
diverges, again by the Comparison Test (Theorem 5.32). The case p ≤ 0 is handled very easily
since limn→∞ 1

np 6= 0 and hence the series diverges by the contrapositive of Theorem 5.33 (The
Negative Test).
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Theorem 5.35 (Alternating Series Test). Let {an} be a sequence satisfying the following condi-
tions:

(1) a1 ≥ a2 ≥ a3 ≥ · · · ≥ an ≥ an+1 ≥ · · · ≥ 0, and

(2) limn→∞ an = 0.

Then
∞∑
k=1

(−1)k+1ak = a1 − a2 + a3 − · · · converges.

Proof. We consider two subsequences of the sequence of partial sums. Let {s2n} be the partial
sums over an even number of elements.

s2n = a1 − a2 + a3 − a4 + · · ·+ a2n−1 − a2n

Note that s2n+2 = s2n + a2n+1 − a2n+2. By condition (1), a2n+1 − a2n+2 ≥ 0. Hence {s2n} is an
increasing sequence. Rewriting s2n as

s2n = a1 − (a2 − a3)− (a4 − a5)− · · · − (a2n−2 − a2n−1)− a2n

and noting that a2k − a2k+1 ≥ 0, we see that s2n ≤ a1 for all n. Hence {s2n} is increasing and
bounded above, hence convergent (Theorem 5.17). Let limn→∞ s2n = u.

Now we consider {s2n−1}, the partial sums over odd numbers of elements.

s2n−1 = a1 − a2 + a3 − a4 + · · ·+ a2n−1

We consider

s2n+1 = a1 − a2 + a3 − a4 + · · ·+ a2n−1 − a2n + a2n+1 = s2n−1 − (a2n − a2n+1) ≤ s2n−1.

Thus {s2n−1} is a decreasing sequence. Similarly to the other case a1 − a2 is a lower bound to
{s2n−1}, hence {s2n−1} is convergent. Let limn→∞ s2n−1 = v.

To complete the proof we compute

0 = lim
n→∞

a2n = lim
n→∞

(s2ns2n−1) = lim
n→∞

s2n − lim
n→∞

s2n−1 = u− v.

Thus u = v and {sn} converges.

Definition 5.36 (Absolute Convergence). A series
∞∑
k=1

ak is said to converge absolutely or be

absolutely convergent if the series
∞∑
k=1

|ak| converges. If
∞∑
k=1

ak converges but
∞∑
k=1

|ak| diverges we

say that
∞∑
k=1

ak converges conditionally.

Theorem 5.37. A series that converges absolutely, converges.

Proof. This follows quickly using the Cauchy criterion for convergence of a series.

Definition 5.38 (Rearrangement of a Series). Let
∞∑
k=1

ak be a series. The series
∞∑
k=1

bk is a rear-

rangement of
∞∑
k=1

ak if there is a one-to-one correspondence f : N → N such that ak = bf(k) for all

k.
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Remark 5.39. Consider the alternating series
∞∑
k=1

(−1)k+1

k = 1− 1
2 + 1

3 − 1
4 + · · · . It converges to

ln(2). If the series is rearranged so that two positive terms precede each negative term then we
have 1 + 1

3 − 1
2 + 1

5 + 1
7 − 1

4 + 1
9 + · · · which converges to 3

2 ln(2). We can actually prove that if a
series has two rearrangements that converge to different numbers then for any real number r there
is a rearrangement of the series that converges to r. This is the motivation for the next theorem.

Theorem 5.40. If a series converges absolutely then every rearrangement of the series converges
to the same value. If a series converges conditionally then for each real number r there is a
rearrangement that converges to r.

Theorem 5.41 (Limit Comparison Test). Suppose that {an} and {bn} are sequences of positive

real numbers and that limn→∞ an
bn

= L with 0 < L <∞. Then both infinite series
∞∑
k=1

ak and
∞∑
k=1

bk

converge or both diverge.

For the proof, see Exercise 5.35. Note that when L is equal to 0 or equal to infinity there are
deducations that can be made about the convergence of the two series but the conclusions are not
as strong as in the theorem.

Theorem 5.42 (Ratio Test). Suppose that {an} is a sequence of non-zero real numbers and that

λ = limn→∞
∣∣∣an+1

an

∣∣∣. Then:

(1) if λ < 1, then the series
∞∑
k=1

ak converges absolutely;

(2) if λ > 1, then the series
∞∑
k=1

ak diverges; and

(3) if λ = 1, then the test gives no information about the convergence of
∞∑
k=1

ak.



5.3. EXERCISES 41

5.3 Exercises

Exercise 5.1. Prove that limn→∞
(

1 + (−1)n
n

)
= 1.

Exercise 5.2. Give an ε — N proof that limn→∞ 2n−1
n+4 = 2.

Exercise 5.3. Find limn→∞
(n+(−1)n)

2n+1 . Prove your result.

Exercise 5.4. Prove that limn→∞
sin( 1

n)
n = 0.

Exercise 5.5. Definition: Let {an} be a sequence of real numbers and L a real number. We say
that Cbdn→∞an = L if for each natural number N there is an ε > 0 such that if n ≥ N , then
|an − L| < ε.

Prove or disprove that Cbdn→∞(−1)n = 0.

Exercise 5.6. Let the sequence {an} be defined by 1. ) a1 = 1 and 2. ) For all n ≥ 1, an+1 = an
3 + 1

4 .
Prove by induction that the sequence is bounded below and is decreasing. Does limn→∞ an exist?
If so, what is the limit?

Exercise 5.7. Suppose that a1 = 0 in Exercise 5.6. How should that problem be changed?

Exercise 5.8. Let a1 = 1 and an+1 = 2an
5 + 4

5 for each natural number n ≥ 2.

a) Find the first four terms of the sequence.

b) Does the sequence appear to be bounded?

Exercise 5.9. Definition: The sequence {an} is said to converge to infinity, written limn→∞ an =
∞, if for every real number M there is a natural number N such that if n ≥ N then an ≥M .

Prove that limn→∞
√
n =∞.

Exercise 5.10. Does the sequence {0, 1, 0, 2, 0, 3, 0, 4, 0, 5, . . . } converge to infinity (see Exercise 5.9
for a definition)? Why or why not?

Exercise 5.11. Suppose that {xn} satisfies limn→∞ xn = a > 0. Prove that limn→∞
√
xn =

√
a.

Exercise 5.12. Find the limits of each of the following sequences, if they exist. Briefly justify your
answer.

a) limn→∞
(−3

8

)n
b) limn→∞

(−8
3

)n
c) limn→∞ 3n+4n

5n

d) limn→∞
(

n
2n+1

)n
e) limn→∞

n√2
n√3

Exercise 5.13. In each of the following, give an example of a sequence (or a pair of sequences, as
needed) which satisfies the given condition or conditions, or explain why no such sequence exists.

a) a bounded sequence {xn} of positive terms such that
{

1
xn

}
diverges
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b) divergent sequences {xn} and {yn} such that {xn + yn} converges

c) sequences {xn} and {yn} where {xnyn} and {xn} converge while {yn} diverges

d) bounded sequences {xn} and {yn} where {xnyn} is unbounded

e) divergent sequences {xn} and {yn} such that {snyn} converges

Exercise 5.14. In each of the following give an example of a sequence (or a pair of sequences, as
needed) which satisfies the given condition or conditions, or explain why no such sequence exists.

a) a sequence that contains subsequences converging to each element of the set
{

1, 12 ,
1
3 ,

1
4 , . . .

}
b) an unbounded sequence that has a convergent subsequence

c) an increasing sequence that diverges but has a convergent subsequence

d) a sequence that has a bounded subsequence but no subsequence that converges

e) a sequence that does not contain either 0 or 1 but has subsequences converging to each of the
numbers 0 and 1

Exercise 5.15. Prove from the definition that
{

1
n2

}
is a Cauchy sequence.

Exercise 5.16. Prove that if r is a positive real number and limn→∞ an = L, then limn→∞ ran =
rL.

Exercise 5.17. Prove that if limn→∞ an = L and limn→∞ bn = M then limn→∞(an−bn) = L−M .

Exercise 5.18. Define the sequence {an} by an =

{
1 + 1

n if 1 ≤ n ≤ 1010

1
n if 1010 < n

. Does {an} converge

or diverge? Give a proof of your answer.

Exercise 5.19. For each of the following series, find the sum (if it exists).

a)
∞∑
k=0

(−4
5

)k
b)

∞∑
k=0

32k

5k

c)
∞∑
k=1

1
4k

d)
∞∑
k=1

1
nk , for n ∈ N with n ≥ 2

Exercise 5.20. For each of the following series, decide whether or not it converges. Justify your
conclusion. If it does converge, find the sum.

a) 1− 1
3 + 2

9 − 4
27 + · · ·

b) 5 + 35
5 + 245

25 + 1715
125 + · · ·

c) −3− 4− 16
3 − 64

9 − · · ·
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Exercise 5.21. Determine a closed form for the proportion of the area shaded in the diagram in
Figure 5.1 of nested squares. Each side of the largest square (comprised of two white squares, a
black square, and a square with subsquares) has length 1.

Figure 5.1

Exercise 5.22. A geometry theorem states that when connecting the midpoints of two sides of
a triangle, the resulting line segment is parallel to the third side and has length half that of the
third side. This fact lets us create nested similar triangles within a single triangle, as in Figure 5.2.
In the figure, 4ABC is similar to 4DEF , which is similar to 4GHJ , and so on forever beyond
the practical limits of pixels. The pattern in side lengths also continues. Use this information to
determine a closed form for the sum of the areas of shaded triangles in terms of the angle θ.

Figure 5.2

Exercise 5.23. We know that if
∞∑
k=1

ak and
∞∑
k=1

bk both converge then
∞∑
k=1

(ak+bk) =
∞∑
k=1

ak+
∞∑
k=1

bk.

The situation for products is not all that simple. That is, there is no simple relation between
∞∑
k=1

ak,
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∞∑
k=1

bk, and
∞∑
k=1

(akbk).

a) Find an example of two divergent series
∞∑
k=1

ak and
∞∑
k=1

bk such that
∞∑
k=1

(akbk) converges.

b) Find an example of two convergent series
∞∑
k=1

ak and
∞∑
k=1

bk such that
∞∑
k=1

(akbk) diverges.

Exercise 5.24. Suppose we have two convergent geometric series,
∞∑
k=0

xk and
∞∑
k=0

yk. Does it ever

occur that
∞∑
k=0

xk
∞∑
k=0

yk =
∞∑
k=0

xkyk for non-zero x and y?

Exercise 5.25. Prove that if
∞∑
k=1

ak converges absolutely then
∞∑
k=1

a2k converges absolutely. (Hint:

Show that for some natural number N , if n ≥ N then a2n ≤ |an| and use the Cauchy criterion.)

Exercise 5.26. Determine which of the following series converge and justify your answer with a
convergence test.

a)
∞∑
k=1

3k

4k+1

b)
∞∑
k=1

ln k
k

c)
∞∑
k=1

10k

k!

d)
∞∑
k=1

k2+1
k4+7

Exercise 5.27. Suppose that the nth partial sum of
∞∑
k=1

ak is given by sn = 2 + n−1
n+1 . Find

a1, a2, a10, and
∞∑
k=1

ak.

Exercise 5.28. For each of the following series, determine all values of x that result in a convergent
series.

a)
∞∑
k=0

3kxk

b)
∞∑
k=0

k2xk

2k

c)
∞∑
k=0

2kxk

(k+1)2

d)
∞∑
k=0

k!xk
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Exercise 5.29. Suppose that
∞∑
k=0

ak = A. Let r be a real number. Using the partial sum definition

of infinite series prove that
∞∑
k=0

rA.

Exercise 5.30. Suppose that
∞∑
k=0

ak = A and
∞∑
k=0

bk = B. Using the partial sum definition of

infinite series prove that
∞∑
k=0

(ak + bk) = A+B.

Exercise 5.31. Suppose that {sn} is the sequence of partial sums for the convergent infinite series
∞∑
k=1

ak. Suppose further that the infinite series
∞∑
k=1

bk has {tn} as its sequence of partial sums and

that for every n, tn = sn + 1
n . Does

∞∑
k=1

bk converge or diverge? Prove your answer.

Exercise 5.32. Let {an} = {a1, a2, a3, . . . } be a sequence of strictly positive terms. Let {sn} be
the partial sums for the sequence {an}. Prove that if there is a real number M such that sn ≤M

for all n, then the infinite series
∞∑
k=1

ak converge.

Exercise 5.33. This problem is an adaptation of #11.4.37 in Stewart’s Calculus: Early Transcen-
dentals (8th ed.) [8]. The decimal representation of a real number x = 0.d1d2d3d4d5 · · · where
di ∈ {0, 1, 2, 3, . . . , 8, 9} (where we choose the terminating version, if possible) is a an infinite series.

a) Write out the infinite series equal to x = 0.d1d2d3d4d5 · · · .

b) Find a converging infinite series that is related to the one equal to x, but slightly larger.

c) Prove that this second series converges.

d) Apply one of the Comparison Tests (Theorems 5.32 and 5.41) to conclude that that the series
for x converges.

As a consequence of your work, the decimal representation of a number in [0, 1] converges and
by extension decimal representation as a system for all real numbers is a consistent, well-defined
system.

Exercise 5.34. Suppose that (xn) is a decreasing sequence that converges to 0. Prove, using the
definition, that the sequence (yn) where yn = x1−x2+x3−x4+· · ·+(−1)n+1xn is a Cauchy sequence.
Note that this is an alternate approach to proving the Alternating Series Test (Theorem 5.35).

Exercise 5.35. In this problem, you will work through a proof of the Limit Comparison Test
(Theorem 5.41).

Step 1. Suppose that {an} and {bn} are sequences of positive real numbers and that limn→∞ an
bn

=
L with 0 < L < ∞. Show that there is a natural number N such that if n ≥ N then
an ≤ 2Lbn.

Step 2. Now use the Cauchy Convergence Criterion (Theorem 5.31) to show that if
∞∑
k=1

bk con-

verges then
∞∑
k=1

ak must converge.
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Step 3. Show that there is a natural number M such that if n ≥M then Lbn
2 ≤ an.

Step 4. Modify Step 2 to show that if
∞∑
k=1

ak converges then
∞∑
k=1

bk must converge.

Exercise 5.36. In this problem, you will be stepped through a proof of Case 1) of the Ratio Test

(Theorem 5.42). Suppose that limn→∞
∣∣∣an+1

an

∣∣∣ = λ < 1 for the infinite series
∞∑
k=1

ak. Follow the

steps outlined below to prove the conclusion, that
∞∑
k=1

ak converges absolutely.

Step 1. Show that for there is a natural number N and a real number µ satisfying λ < µ < 1

such that if n ≥ N then
∣∣∣an+1

an

∣∣∣ ≤ µ.

Step 2. Show htat the series
∞∑
k=1

µk converges absolutely.

Step 3. Show that |aN+k| ≤ |aN |µk.

Step 4. Use the comparison test on the series
∞∑
k=1

|ak| and
∞∑
k=1

µk to complete the proof.



Chapter 6

The Topology of the Real Numbers

Topology is the study of space at the most abstract level. When applied to the real numbers it
gives us many important tools to understand the real numbers and functions of them. Topology is
based on the basic notions of “open set” and “limit point”. Our task in this chapter is to develop
these notions in order to define the limit of a function. We begin with the definition of an epsilon
neighborhood of a point.

Definition 6.1 (Epsilon Neighborhood). Let x and ε > 0 be real numbers. The ε-neighborhood of
x is the set Nε(x) defined by:

Nε(x) = {y ∈ R | |x− y| < ε} = (x− ε, x+ ε).

Example 6.2.

1. The 1-neighborhood of 0 is the set of all real numbers less than one unit away from 0. Namely:
N1(0) = (−1, 1).

2. The 3-neighborhood of 5 is N3(5) = (2, 8).

3. The 0.01-neighborhood of 2 is N0.01(2) = (1.99, 2.01).

Definition 6.3 (Open Set). A set U of real numbers is said to be an open set if for each x ∈ U
there is an ε > 0 such that Nε(x) ⊂ U . Note that this condition has to hold for every point x in
the set U but that for each x only one ε is required.

Example 6.4.

1. (0, 1) is an open set.

To prove this let x be an arbitrary point in (0, 1). We need to find a small open interval
centered on x that is entirely contained in (0, 1). Let ε = min{x, 1 − x}. Thus ε is the
distance from x to the closest endpoint 0 or 1. We need to show that Nε(x) ⊂ U for every x.

Case 1. Suppose that 0 < x ≤ 1
2 . Then ε = x. Since 2x ≤ 1,

Nε(x) = (x− ε, x+ ε) = (0, 2x) ⊂ (0, 1).

Case 2. Suppose 1
2 < x < 1. Then ε = 1− x. Since 2x− 1 ≥ 0,

Nε(x) = (x− (1− x), x+ (1− x)) = (2x− 1, 1) ⊂ (0, 1).

47
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2. The empty set, ∅, is an open set.

The condition is satisfied for every x in the empty set, of which there are none.

3. The set R is an open set.

For each x ∈ R, let ε = 1. Then Nε(x) = (x− 1, x+ 1) ⊂ R.

The fact that R and ∅ are open sets is surprisingly important.

Definition 6.5 (Interior Point of a Set). An element x ∈ U is an interior point of the set U if
there is an ε > 0 satisfying Nε(x) ⊂ U . Every point in an open set is an interior point. The
interior of a set U is the set of all interior points of U . We denote this by U◦ = {x ∈ U | ∃ε >
0 such that Nε(x) ⊂ U}.

Theorem 6.6. A set U is open if and only if U = U◦.

For the proof, simply read the two relevant definitions.

Topology is based on the following two properties of open sets, properties that are axioms for
a general topological space.

Theorem 6.7.

(1) Let {Uα | α ∈ A} be any collection of open sets, of any cardinality. Then
⋃
α∈A Uα is an open

set.

(2) Let {U1, U2, . . . , Un} be any finite collection of open sets. Then
⋂n
k=1 Uk = U1 ∩U2 ∩ · · · ∩Un

is an open set.

Proof. For part (1): Suppose that x ∈ ⋃α∈A Uα. Then by the definition of union x ∈ Uβ for a
particular β ∈ A. Thus there is an ε > 0 such that Nε(x) ⊂ Uβ ⊂

⋃
α∈A Uα.

For part (2): This case is somewhat more difficult than 6.7.(1). Let x ∈ ⋂n
k=1 Uk. Since for

each k, 1 ≤ k ≤ n, the set Uk is open, there is an εk > 0 such that Nεk(x) ⊂ Uk. Since there are
finitely many of these εk, we can find a smallest one. Let ε = min{ε1, ε2, . . . , εk} > 0. Since ε ≤ εk
for each k, we have that Nε(x) ⊂ Nεk(x) ⊂ Uk. Thus the set Nε(x) is contained in the intersection
of the sets, that is Nε(x) ⊂ ⋂n

k=1 Uk. Thus the intersection is an open set.

Example 6.8.

1. Consider the following collection of open intervals:

{Un} =

{(
−1 +

1

n
, 1− 1

n

)}
=

{
∅,
(−1

2
,
1

2

)
,

(−2

3
,
2

3

)
, . . .

}
.

The union of all these sets is (−1, 1), an open set as promised by the theorem. Their inter-
section (the empty set) is also open but that is not promised by the theorem.

2. Consider the following different collection of open intervals:

{Un} =

{(
0, 1 +

1

n

)}
=

{
(0, 2),

(
0,

3

2

)
,

(
0,

4

3

)
, . . .

}
.
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Taking the intersection of this infinite collection of open sets yields:

∞⋂
k=1

(
0, 1 +

1

k

)
= (0, 1],

which is not an open set.

The usefulness of open sets will become apparent when we have defined the complementary
concept of closed set. We defined open set and then interior point. For closed sets we define limit
points first (the complementary notion to interior point) and then define closed set.

Definition 6.9 (Limit Point of a Set). Let K be a set of real numbers. The number x is a limit
point of K if for every ε > 0 the intersection K ∩Nε(x) contains a point different from x.

This definition is rather subtle. There are many things it does not say. For example it does
not say that x is in the set K. It also does not say that x is not in K. Also notice the “for every
ε > 0,” which differs from the “there exists ε > 0” in the definition of open set.

A few examples will bring out the difficulties.

Example 6.10 (Limit Points).

1. The number 1 is a limit point of (0, 1).

Let ε > 0 be given. We need to find an element (different from 1) that is in (0, 1) ∩ Nε(1) =
(0, 1)∩ (1− ε, 1 + ε). If ε ≥ 1, we can choose 0.5 in this intersection (as is any other point in
(0, 1)). If ε < 1 then (0, 1) ∩ (1− ε, 1 + ε) = (1− ε, 1). Then 1− ε

2 is in the intersection and
hence we have proved that 1 is a limit point of (0, 1).

2. The number 1 is a limit point of [0, 1]. The proof is the same as the above example.

3. The number 0 is a limit point of the set S =
{

1
n

∣∣n ∈ N
}

=
{

1, 12 ,
1
3 , . . .

}
.

Let ε > 0 be given. By the Archimedean Principle (Theorem 3.9), there is a natural number n
such that 0 < 1

n < ε. Notice that 1
n is in Nε(0)∩S = (−ε, ε)∩S =

{
1
m

∣∣ | m ∈ N and 1
m < ε

}
.

4. The number
√

2 is a limit point of Q, the rational numbers.

Again let ε > 0 be given. By the Density Theorem (Theorem 3.10) there is a rational number
between the two real numbers

√
2 − ε and

√
2 + ε. That rational number is all we need for

the proof.

Definition 6.11 (Closed Set). A set K is closed if it contains all its limit points. That is, the set
K is closed if whenever x is a limit point of the set K then x ∈ K.

Again examples help one to understand this definition.

Example 6.12 (Closed Sets).

1. The number 1 is a limit point of (0, 1) and of [0, 1]. Clearly (0, 1) is not a closed set since it
does not contain one of its limit points, namely 1. The interval [0, 1] is a closed set but that
takes a bit of proof. We know that it contains one of its limit point (namely, 1) but what
about all the others?

2. The empty set is a closed set. It doesnt have any limit points so it must contain them all.
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3. The set of real numbers is a closed set since it contains all possible limit points.

4. The rational numbers is not a closed set. We saw that
√

2 is a limit point of Q but it is not
in Q.

5. Let S =
{

1, 12 ,
1
3 , . . .

}
. The number 0 is not in S but we showed that it is a limit point of S,

thus S is not closed. The set S ∪ {0} is a closed set.

Open and closed sets are closely related. In fact the complement of an open set is a closed set
and vice versa. To show this we need lemma from the theory of sets.

Lemma 6.13. Let A and B be sets. Then A ⊂ B if and only if A ∩Bc = ∅.

Proof. Suppose that A ⊂ B. Then every element of A is an element of B and hence cannot be in
Bc. Thus A ∩Bc = ∅. The other direction is just as easy.

Theorem 6.14. The complement of an open set is a closed set and the complement of a closed
set is an open set.

Proof. Let U be an open set. Let x ∈ U . We need to show that x cannot be a limit point of U c.
Since U is open there exists an ε > 0 such that Nε(x) ⊂ U . By the preceding lemma Nε(x)∩U c = ∅.
Thus x is not a limit point of U c. Hence all the limit points of U c are already in U c and thus it is
a closed set.

Now let K be a closed set. Let x ∈ Kc. By the definition of closed set x cannot be a limit point
of K. So Nε(x)∩K = ∅ for some ε > 0. Again by the lemma Nε(x) ⊂ Kc and hence Kc is an open
set.

Theorem 6.15.

(1) Let {Kα | α ∈ A} be any collection of closed sets. Then
⋂
α∈AKα is a closed set.

(2) Let {K1,K2, . . . ,Kn} be a finite collection of closed sets. Then
⋃n
k=1Kk = K1∪K2∪· · ·∪Kn

is a closed set.

Proof. Notice that for closed sets the roles of union and intersection are reversed from their roles
with open sets (Theorem 6.7). The proof of this theorem is simply the application of the DeMorgan
Laws (Theorem 2.13) to Theorem 6.7. We will prove (2).

The set {Kc
1,K

c
2, . . . ,K

c
n} is a finite collection of open sets and hence its intersection is open,

that is
⋂n
k=1K

c
k = Kc

1∩· · ·∩Kc
n is an open set. Thus the complement of the intersection is a closed

set. Which closed set is it? (
n⋂
k=1

Kc
k

)c
=

n⋃
k=1

(Kc
k)
c =

n⋃
k=1

Kk

This finishes the proof.

Open sets are modeled on open intervals. One can prove that every open set is the union of
countably many open intervals. Closed sets are much harder to characterize. Here is an example
of how odd closed sets can be.



51

Example 6.16. Let ε > 0 be a very small real number. Let {x1, x2, x3, . . . } be an enumeration
of the rational numbers. Thus every rational number is in the list in exactly one position in the
sequence. For each natural number n let In be the open interval

(
x− ε

2n+2 , x+ ε
2n+2

)
. Notice that

the length of this interval is ε
2n+1 . Consider the open set I =

⋃∞
k=1 Ik. The set I contains every

rational number since each rational is the center point of an interval contained in I. The sum of
the lengths of all the intervals is less than or equal to

∞∑
k=1

ε

2k+1
= ε

∞∑
k=1

(
1

2

)k+1

= ε

∞∑
k=2

(
1

2

)k
=
ε

2
.

Thus I is a very small open set, of total length at most ε
2 . Its complement is a closed set whose total

length is infinite, a huge set of real numbers. It contains no rational numbers and is a closed set.
Since it contains no rational numbers it contains no closed intervals of positive length. Every closed
interval of positive length has to contain a rational number by the Density Theorem (Theorem 3.10).

The notion of limit point and convergent sequence come together in the following theorem which
gives a criterion for a point being a limit point of a set.

Theorem 6.17. The element x is a limit point of set K if and only if there exists a sequence {xk}
contained in set K satisfying two conditions:

(1) xk 6= x for all k ∈ N, and

(2) limn→∞ xn = x.

Proof. Assume that x is a limit point of K. For each natural number n there is a point xn of K in
the 1

n -neighborhood of x that is different from x. That is xn ∈ N 1
n

(x) ∩K and xn 6= x. These xn

form a sequence {xn}. All that is left to show is that limn→∞ xn = x.

Let ε > 0 be given. By the Archimedean Principle (Theorem 3.9) there is a natural number N
such that 1

N < ε. If n ≥ N , then 1
n ≤ 1

N < ε and xn ∈ N 1
n

(x) ⊂ Nε(x). Thus |xn − x| < ε for all

n ≥ N and we have convergence.

Now assume the existence of a sequence {xn} with the specified properties and show that x is
a limit point of K. We need to show that for each ε > 0 there is a point of K different from x in
the neighborhood Nε(x). Since limn→∞ xn = x there are always terms in the sequence within ε of
x. These terms are never equal to x, thus x is a limit point of K.

Example 6.18. Show that 1 is a limit point of (0, 1) using the above theorem.

Let xn = 1 − 1
n+1 . Then each term of the sequence {xn} =

{
1− 1

n+1

}
is in (0, 1), no term

equals 1, and limn→∞ 1− 1
n+1 = limn→∞ n

n+1 = 1.

Definition 6.19 (The Closure of a Set). Let A be a set of real numbers. The closure of A, denoted
by A, is the set consisting of A and its limit points. That is, if L is the set of limit points of A then
A = A ∪ L.

Example 6.20.

1. (0, 1) = [0, 1]

2. Q = R
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3. {1, 2, 3} = {1, 2, 3}

Theorem 6.21. For any set A, the closure A is a closed set. Furthermore A is closed if and only
if A = A.

Proof. All we need to show is that when we create A, we are not creating any new limit points.
Let x be a limit point of A. We need to show that x ∈ A. Let ε > 0 be given. Since x is a limit
point of A, there is a point y ∈ A, different from x, that is within ε of x. We need to show that we
can always choose y so that it is in A. Then x will be a limit point of A and hence in the closure of
A. Suppose our first choice of y is a limit point of A but not an element of A. Let δ = |x− y| < ε
and let ω = ε− δ > 0. Since y is a limit point of A, there is a point z in A, different from y, such
that |y − z| < ω, in other words z ∈ Nω(y) and z 6= y. By the Triangle Inequality (Theorem 2.11),

|z − x| ≤ |z − y|+ |y − x| < ω + δ = ε.

Thus z is in the ε-neighborhood of x and z is in A. Thus x is a limit point of A.

The second part of the theorem is quite easy to prove.

We now have all the basic facts about open and closed sets. There is a common confusion about
these concepts. If a set is not open it is not necessarily closed. There are many (infinitely many)
sets that are neither open nor closed. Table 6.1 gives some examples of the relation between open
and closed.

Closed Not Closed

Open ∅, R (0, 1)
Not Open [0, 1] (0, 1], [0, 1)

Table 6.1

Thus there are sets that are neither open nor closed and sets (exactly two of them) that are
both open and closed. Open and closed are complementary concepts, not opposite concepts.

Definition 6.22 (Isolated Point). A point x in set A is an isolated point of A if it is not a limit
point of A.

Every point of A is either a limit point or an isolated point. For example the set A = {1, 2, 3}
consists of only isolated points.

We have one more topological (space) concept to define, that of compactness.

Definition 6.23 (Compact Set). A set K is compact if every sequence, {xn}, contained in K has
a subsequence that converges to a point in K. (In some texts this is called “sequentially compact”
and “compact” has a different definition. For the real numbers the two define equivalent concepts.)

Example 6.24. The interval [0, 1] is compact.

Proof. Let {xn} be a sequence in [0, 1]. Since 0 ≤ xn ≤ 1 for each n, the sequence is bounded.
Thus by the Bolzano-Weierstrass Theorem (Theorem 5.21) it contains a convergent subsequence.
Call the subsequence {yn} and suppose that its limit is y. If for some n, yn = y, then y is in [0, 1]
and hence [0, 1] is compact. So suppose that y 6= yn. Then by the earlier Theorem 6.17, y is a limit
point of [0, 1] and since that set is closed, y is in [0, 1]. We have shown compactness.
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Showing that a set is compact directly is often very difficult. For the real numbers, however,
there is an easy characterization of compact sets.

Theorem 6.25 (Heine-Borel Theorem). A set is compact if and only if it is closed and bounded.

Proof. Assume that K is a compact set (according to the definition). We need to show that it is
both closed and bounded. To prove that K is closed is easier so we start with that. Let x be a limit
point of K. We need to show that x ∈ K. Since it is a limit point we can use Theorem 6.17 to find
a sequence {xn} ⊂ K satisfying x 6= xn and limn→∞ xn = x. Since by the compactness of K this
sequence has a subsequence that converges to a point of K and we know that every subsequence
of a convergent sequence converges to the limit of the sequence, we know that x is in K.

To prove that K is bounded will be accomplished by contrapositive. We assume that K is not
bounded above. (The not bounded below case is practically the same). Let x1 be an element of K.
Since K is not bounded above, x1 cannot be an upper bound of K. Thus there must be x2 ∈ K
satisfying x1 < x2. Further we can choose x2 to be greater than 2. Continuing in this fashion
we can choose xn ∈ K satisfying xn−1 < xn and n < xn for each natural number n. We have
thus constructed an unbounded sequence {xn} that has no bounded subsequences. Thus it has no
convergent subsequences. Hence K is not compact.

Now for the opposite implication, we assume that K is both closed and bounded. This part of
the proof mimics the flow of the above example 6.24.

Let {xn} be a sequence contained in K. Since K is bounded so is the sequence {xn}. By the
Bolzano-Weierstrass Theorem (Theorem 5.21) the sequence has a convergent subsequence, call it
{yn}, which converges to a point y. We need to show that y ∈ K. This holds because K is closed.
If y occurs in the subsequence then it is already in K and we are done. Let us assume that yn 6= y
for all n. Then by Theorem 6.17, y is a limit point of K. Since K is closed and hence contains all
its limit points it follows that y ∈ K.

In what follows we will define what is called the Cantor Set, an interesting closed set of real
numbers. It was discovered by Georg Cantor while he was studying the discontinuities of functions
defined by Fourier Series. We begin by defining a sequence of closed sets.

Let C0 = [0, 1]. From C0 we remove its middle third to yield a set called C1. That is,

C1 = C0 −
(

1

3
,
2

3

)
= [0, 1]−

(
1

3
,
2

3

)
=

[
0,

1

3

]
∪
[

2

3
, 1

]
.

This is the union of two closed sets and hence is closed. We then repeat the process by removing
the middle thirds of the intervals remaining. The middle thirds of

[
0, 13
]

and
[
2
3 , 1
]

are
(
1
9 ,

2
9

)
and(

7
9 ,

8
9

)
, respectively. Note that we are removing open intervals in each case. Thus we have that

C2 = C1 −
((

1

9
,
2

9

)
∪
(

7

9
,
8

9

))
=

[
0,

1

9

]
∪
[

2

9
,
1

3

]
∪
[

2

3
,
7

9

]
∪
[

8

9
, 1

]
.

With each step the closed sets Cn get more and more complicated. It is easy to see that Cn consists
of 2n disjoint closed intervals each of width

(
1
3

)n
. For example,

C3 =

[
1,

1

27

]
∪
[

2

27
,
1

9

]
∪
[

2

9
,

7

27

]
∪
[

8

27
,
1

3

]
∪
[

2

3
,
19

27

]
∪
[

20

27
,
7

9

]
∪
[

8

9
,
25

27

]
∪
[

26

27
, 1

]
.
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To form the Cantor Set, C, we take the intersection of all these sets:

C = C0 ∩ C1 ∩ C2 ∩ · · · =
∞⋂
n=0

Cn.

This set has several names — the Cantor Ternary Set (since it involves the removal of middle
thirds) and Cantor Dust (since in some sense we will not define, there are very few points in C)
are common alternatives.

The set C is a very difficult set to try to picture in your mind. We can say that as an intersection
of closed sets it is closed and, further, since each of the endpoints of each of the closed intervals
stays in the set, C is non-empty. For example C contains 0, 1, 13 ,

1
9 ,

1
27 , . . . and much more. Thus

we can see that C is at least a countably infinite set. We will show that C is actually uncountable.

All the points listed so far are of the form k
3n but we shall show that 1

4 is in C. To explore C
we are going to recall base 3 expansions of numbers. For example,

1

3
= 0.13 and

5

27
= 0.0123.

Also,

0.0123 = 0 +
0

3
+

1

32
+

2

33
=

1

9
+

2

27
=

5

27
.

Every real number in [0, 1] has a base three expansion and some have two different expansions.
Recall that in base 10, we observed 1.0 = 0.99999 · · · . The same phenomenon occurs in base three.
For example 1

3 = 0.13 = 0.02222 · · ·3. This occurs for every real number that has a terminating base
three expansion, namely those rational numbers whose denominators (in lowest terms) are powers
of 3. For those numbers we will always choose to use the repeating, non-terminating expansion.
For example 1.0 = 0.22222 · · ·3. It is helpful at this point to recall the Geometric Series.

1 = 0.2222 · · ·3 =
2

3
+

2

9
+

2

27
+ · · · =

∞∑
k=1

2

3k
= 2

∞∑
k=1

1

3k
= 2

(
1
3

1− 1
3

)
= 2

(
1

2

)
= 1

Now consider the Cantor Set C and the sets we remove. At our first step we remove the open
interval

(
1
3 ,

2
3

)
. Every number in this set has a base three expansion whose first digit after the

point is 1, since they are all greater than 1
3 and less than 2

3 . The number 1
3 itself has a base three

expansion of 0.13 but we have chosen to use the expansion 0.02222 · · ·3. Thus removing the first
open interval is equivalent to removing all numbers that have a 1 in the first base 3 position. It
is not hard to see that when we remove the second pair of open intervals we are removing all the
numbers that have a 1 in their second base three position. (Again, we are using our convention of
picking the repeating form rather than the terminating form in each case.)

Thus C can be viewed as the set of all real numbers in [0, 1] whose base three expansions consist
of only 0s and 2s. All the numbers that have a 1 in their expansion have been removed.

For example the number 0.02020202 · · ·3 is in C. What is that number?

0.02020202 · · ·3 =
2

9
+

2

81
+

2

729
+ · · · = 2

∞∑
k=1

(
1

9

)k
= 2

(
1
9

1− 1
9

)
= 2

(
1

8

)
=

1

4

Thus we have shown that 1
4 ∈ C.

Theorem 6.26. The Cantor Set C is uncountable.
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Proof. The set C consists of all real numbers in [0, 1] that have base three expansions consisting of
just the digits 0 and 2. The numbers in [0, 1] also have base 2 expansions all of whose digits are 0
or 1. (We choose 1.0 = 0.1111 · · ·2). Consider the function f : [0, 1]→ C defined by f(x) equals the
base three expansion formed by doubling all the digits of the base 2 expansion of the numbers in
[0, 1]. For example f(0.11001100 · · ·2) = 0.22002200 · · ·3. It is easy to show that f is one to one and
onto and hence that C has the same cardinality as the interval [0, 1], hence C is uncountable.
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6.1 Exercises

Exercise 6.1. Suppose that A and B are non-empty sets of real numbers and that x is a limit
point of A ∪B. Prove that x is a limit point of A or of B.

Exercise 6.2. Prove: A is closed if and only if A = A.

Exercise 6.3. Prove that if a set is closed and bounded then it is compact.

Exercise 6.4. Prove that the interval (2, 4) is an open set.

Exercise 6.5. Prove that the interval [2, 4] is a closed set.

Exercise 6.6. Prove that (7,∞) is an open set.

Exercise 6.7. Let A =
{

1 + (−1)n
n

∣∣n ∈ N
}

. Find all the limit points of A. Is A closed? Find (Ac)

and (A)c.

Exercise 6.8. Find a set with exactly three limit points.

Exercise 6.9. Find an irrational number that is an interior point of the set of rational numbers.

Exercise 6.10. Prove that the empty set is compact.

Exercise 6.11. Find an example of a compact set which does not contain its least upper bound.

Exercise 6.12. Prove that if A and B are compact then so are A ∩B and A ∪B.

Exercise 6.13. Find a collection of compact sets such that the intersection of all the sets is not
compact.

Exercise 6.14. Which of the following sets are compact?

a) {x| − 1 < x2 ≤ 4}

b) Q ∩ [0, 1]

c)
{

1, 12 ,
1
3 ,

1
4 , . . .

}
d)
{

1, 12 ,
2
3 ,

3
4 , . . .

}
e) [−1, 0) ∪ (0, 1]

Exercise 6.15. Prove that every finite set is compact.

Exercise 6.16. Find a nested set of non-empty closed sets K1 ⊃ K2 ⊃ K3 ⊃ · · · satisfying⋂∞
i=1Ki = ∅ (if possible).

Exercise 6.17. Let A =
{
m
2m

∣∣m,n ∈ Z
}

. The number 1
3 is a limit point of A. Find a sequence

in A that converges to 1
3 . (Hint: Find an x such that

∞∑
i=1

xn = 1
3 . This gives a sequence which

converges to 1
3 .)

Exercise 6.18. Find all the values of n = 0, 1, 2, . . . , 13 such that n
13 is an element of the Cantor

set, C.
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Exercise 6.19. Prove that the following sets are not open sets.

a) The rational numbers, Q

b)
{

1, 12 ,
1
3 , . . .

}
c) (2, 7]

Exercise 6.20. Suppose ε > δ > 0. Let A = Nε(x) for some given real number x. Find A∪B and
A ∩B. Then find ε and x if Nε(x) = N3(4) ∪N5(3).

Exercise 6.21. Let {x1, x2, x3, . . . } be an enumeration of the rational numbers. For each natural
number n let εn = 1

2n and let Un = Nεn(xn). Finally, let U =
⋃∞
n=1 Un, which is an open set. What

is the sum of the lengths of all the sets Un? Are there any rational numbers in U c? Why or why
not?

Exercise 6.22. Let U be an open set with x ∈ U . Suppose that {xn} is a sequence that converges
to x. Prove that at most finitely many terms of the sequence are not in U .

Exercise 6.23. Let x be a real number that is not in the set A. Suppose there is a sequence
{xn} ⊂ A such that limn→∞ xn = x. Prove that x is a limit point of set A.
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Chapter 7

Limits and Continuity

We defined our first limit, the limit of a sequence, earlier. We now move to a more complex and
subtle limit, the limit of a function. Since a sequence was defined as a function it may seem that
we are doing nothing new, however, sequences are functions with a domain of the natural numbers.
We wish to deal with functions on general subsets of the real numbers. The topology presented in
the last chapter will enter the definition. This is the limit used in calculus to define the derivative.
However, our definition will differ from that given in calculus in an important way.

Definition 7.1 (Limit of a Function). Let f : A → R be a function and let c be a limit point of
the set A. We say that the limit of f as x approaches c is L, written limx→c f(x) = L, if for every
ε > 0, there is a δ > 0 such that if 0 < |x− c| < δ and x ∈ A then |f(x)− L| < ε.

Remark 7.2. There are several points about this definition that need to be brought up before we
try to compute a limit.

1. The value of δ depends on ε, that is given ε it is our job to find a δ that satisfies the definition.
Since we want to do this for all ε at once, what we really want is to express δ as some function,
say δ = a(ε).

2. The c in the definition is a limit point of the domain of f but not necessarily in the domain
of f . Thus f(c) may or may not exist, and if it does exist its value may be different from the
limit value L.

3. In calculus A is usually an open interval containing c or with c left out. Thus the limit from
calculus is a two sided limit. In our definition A can be a much more general set. For example
if f is a function on A =

{
1, 12 ,

1
3 ,

1
4 , . . .

}
then the limit limx→0 f(x) may exist, since 0 is a

limit point of A. But since A has no other limit points, there are no other limits involving f .

Example 7.3.

1. Let f : R→ R be defined by f(x) = x and let c be any real number. Since c is a limit point
of the domain R, the limit limx→c f(x) = limx→c x may be defined. In fact it is. We will show
that limx→c x = c. This is not surprising since on an intuitive level it says that the limit of x
as x approaches c is c.

Let ε > 0 be given. Let δ = ε be the functional relation between these two quantities. If x
is a real number then it is in the domain of our function. Now suppose that 0 < |x− c| < δ.
Neglecting the left inequality and using the fact that δ = ε we have that |f(x)− c| = |x− c| <
δ = ε or just |x− c| < ε and we are done.

59
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2. Example 7.3.1. was very easy due to the simplicity of f . Making f more complex we show
that limx→2 x

2 = 4. Again we assume that the domain of f(x) = x2 is the set of all real
numbers and thus 2 is a limit point of the domain. Let ε > 0 be given. We need to find δ > 0
such that if 0 < |x − 2| < δ then |x2 − 4| < ε. Factoring x2 − 4 into (x − 2)(x + 2), we find
that x+ 2 defines the relation between ε and δ. Since x varies, we dont really know how big
|x + 2| is. We control how big it can get by fixing a possible value of δ, say δ = 1. Then
|x − 2| < δ = 1 yields −1 < x − 2 < 1 or 1 < x < 3. We really want to control the size of
|x+ 2|. With our condition that 1 < x < 3 we have 3 < |x+ 2| < 5. The 5 is the number of
interest. Here is the proof that limx→2 x

2 = 4.

Given ε > 0, let δ = min
{

1, ε5
}

. If 0 < |x − 2| < δ then we know that |x + 2| < 5 by our
calculation above since we are assuming that δ ≤ 1. Then |x2− 4| = |x− 2||x+ 2| < δ · 5 ≤ ε.
And we are done.

What follows is not part of the proof but simply an example of the relation between ε and
δ. To make the proof more concrete let ε = 0.0007. Then δ = min

(
1, 0.0075

)
= 0.0014. Thus

|x− 2| < δ − 0.0014 translates to 1.9986 < x < 2.0014. Thus 3.99440196 < x2 < 4.00560196
or −0.00559804 < x2 − 4 < 0.00560196. Thus we have |x2 − 4| < 0.007 for all those xs.

We now prove a theorem similar to one we proved shortly after making the definition of the
limit of a sequence.

Theorem 7.4. Suppose that f : A→ R, c is a limit point of A, and limx→c f(x) = L. Then there
is an ε > 0 such that f is bounded on Nε(c) ∩A.

Proof. To confuse the reader, in this theorem the role of ε will be played by the number 1 and
the role of δ > 0 will be played by ε. Since limx→c f(x) = L we know that there is an ε > 0
(masquerading as δ) such that if 0 < |x − c| < ε and x ∈ A, then |f(x) − L) < 1. This last
inequality may be replaced by L − 1 < f(x) < L + 1. Thus for all x in Nε(c) ∩ A we have f(x)
bounded below by L− 1 and bounded above by L+ 1 with the possible exception of x = c. Then
f(c) 6= L is a possibility if c is in the domain of f . Thus we can say that for all x in Nε(c) ∩A we
have min{f(c), L− 1} ≤ f(x) ≤ max{f(c), L+ 1}. Thus f is bounded on Nε(c) ∩A.

Another theorem that is similar to one we proved for sequential limits is:

Theorem 7.5 (Uniqueness of Limits of Functions). If limx→c f(x) = L and limx→c f(x) = M ,
then L = M .

Proof. We assume that L 6= M and let ε = |L−M |
2 > 0. Assume that A is the domain of f and

that c is a limit point of A. (All of this is implicit in the limit notation). Then there are positive
numbers δ1 and δ2 such that if 0 < |x − c| < δ1, then |f(x) − L| < ε

2 and if 0 < |x − c| < δ2 then
|f(x)−M | < ε

2 . Now choose δ = min{δ1, δ2}. Then if |x− c| < δ we have

|L−M | = |L− f(x) + f(x)−M |
≤ |L− f(x)|+ |f(x)−M |
<
ε

2
+
ε

2

= ε =
|L−M |

2

This is a contradiction because no positive number (in this case |L−M |) can be less than one half
itself.
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As we saw in the examples, proving a limit for a function as simple as f(x) = x2 from the
definition is not a trivial process. The next theorem gives us a way to compute limits without
resorting to the definition at every turn.

Theorem 7.6. Let limx→c f(x) = L, limx→c g(x) = M , and k be a real number. Then:

(1) limx→c(f(x)± g(x)) = L±M ,

(2) limx→c kf(x) = kL,

(3) limx→c(f(x) · k(x)) = L ·M , and

(4) if M 6= 0, then limx→c
(
f(x)
g(x)

)
= L

M .

Proof. We prove the addition case ((1)) and the multiplication case ((3)).
For ((1)): Let ε > 0 be given. We assume that both functions have domain A and that c is

a limit point of the common domain. Because the individual limits exist we can find δ1 > 0 and
δ2 > 0 such that if 0 < |x − c| < δ1 and x ∈ A, then |f(x) − L| < ε

2 and if 0 < |x − c| < δ2 then
|g(x)−M | < ε

2 . Let δ = min{δ1, δ2}. Then if 0 < |x− c| < δ and x ∈ A, then

|(f(x) + g(x))− (L+M)| = |(f(x)− L) + (g(x)−M)|
≤ |f(x)− L|+ |g(x)−M |
<
ε

2
+
ε

2
= ε.

The proof for subtraction is almost exactly the same.
For ((3)): The proof for multiplication is more involved. When we proved a similar result for

sequences we required the boundedness of a convergent sequence. Theorem 7.4 gives us what we
need in this proof.

Let ε > 0 be given. We begin with a short computation.

|f(x)g(x)− LM | − |f(x)g(x)− f(x)M + f(x)M − LM | ≤ |f(x)||g(x)−M |+ |f(x)− L||M |

By Theorem 7.4 there is a δ1 < 0 such that for all x satisfying 0 < |x − c| < δ1 and x ∈ A,
|f(x)| ≤ K for some real number K. (That is the function f is bounded on a certain set.)

Since limx→c f(x) = L, there exists a δ2 > 0 such that for all x satisfying 0 < |x− c| < δ2 and
x ∈ A,

|f(x)− L| < ε

2(|M |+ 1)
.

Since limx→c g(x) = M , there exists a δ3 > 0 such that for all x satisfying 0 < |x − c| < δ3 and
x ∈ A,

|g(x)−M | < ε

2(|K|+ 1)
.

Let δ = min{δ1, δ2, δ3}. Now assume that x satisfies 0 < |x − c| < δ and x ∈ A. Using the short
computation we started with we have:

|f(x)g(x)− LM | ≤ |f(x)||g(x)−M |+ |M ||f(x)− L|
< |K| · ε

2(|K|+ 1)
+ |M | · ε

2(|M |+ 1)

<
ε

2
+
ε

2
= ε
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Definition 7.7 (A Real Polynomial). A real polynomial or a polynomial with real coefficients, is a
function of the following form:

f(x) = anx
n + an−1xn−1 + · · · a1x+ a0,

where the ak are real numbers and n ∈ N ∪ {0}.

Putting our Example 7.3 together with Theorem 7.6 we have :

Theorem 7.8. If P (x) is a polynomial, then limx→c P (x) = P (c) for any real number c. If

f(x) = P (x)
Q(x) is a quotient of polynomials and Q(c) 6= 0 then limx→c f(x) = f(c).

Proof. We know that limx→c x = c from Example 7.3.1.. Polynomials and quotients of polyno-
mials are formed with real numbers and the four arithmetic operations, all of which fall under
Theorem 7.6.

A very important case of limits of quotients of polynomials occurs even when Q(c) = 0.

Example 7.9. Consider f(x) = x3−1
x−1 , which is undefined at x = 1. We can however compute

limx→1 f(x) = limx→1
x3−1
x−1 . Factoring the numerator yields

x3 − 1

x− 1
=

(x− 1)(x2 + x+ 1)

x− 1
=

(
x− 1

x− 1

)
(x2 + x+ 1).

Since x−1
x−1 = 1 except when x = 1, we see that the function f(x) is equal to the polynomial x2+x+1

except at x = 1. Since our definition of limx→c f(x) specifically ignores the value of f at x = c, we
have

lim
x→1

x3 − 1

x− 1
= lim

x→1
x2 + x+ 1 = 12 + 1 + 1 = 3.

Another way to look at this is that limx→c x−cx−c = 1 since the quotient is equal to 1 for all x except
x = c, where it is undefined.

We have seen that the definition of the limit of a function is more complex than that of the
limit of a sequence, but there is an important connection between the two definitions that can be
very useful.

Theorem 7.10. Let f : A → R and let c be a limit point of A. Then limx→c f(x) = L if and
only if for every sequence {xn} contained in A satisfying limn→∞ xn = c and xn 6= c we have
limn→∞ f(xn) = L.

Proof. We assume that limx→c f(x) = L. Let {xn} ⊂ A be a sequence that converges to c and
is never equal to c. Given ε > 0, there is a δ > 0 such that for all x satisfying 0 < |x − c| < δ
and x ∈ A it follows that |f(x) − L| < ε. Since {xn} converges to c, there is a natural number
N such that if n ≥ N then |xn − c| < δ. Since c is not in the sequence we can say further that
0 < |xn − c| < δ. Then by the existence of the limit we have |f(xn) − L| < ε which tells us that
limn→∞ f(xn) = L.

We can prove the opposite implication by contradiction, but leave the details to the reader.

Definition 7.11 (Continuity). Let f : A → R and c ∈ A. We say that f is continuous at c if for
every ε > 0 there is a δ > 0 such that if |x− c| < δ and x ∈ A, then |f(x)− f(c)| < ε. We say that
f is continuous on the set A if it is continuous at all points c in A.
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Remark 7.12. Again the definition of continuity is slightly different from that given in most
Calculus texts. Often the given definition is that f is continuous at c if limx→c f(x) = f(c). If c is
an isolated point of A then f is automatically continuous there under our definition but limx→c f(x)
but does not exist and hence f would not be continuous using the calculus definition. Notice also
that the definition of continuity at c differs only slightly from the definition of limit. The point c
must be in domain A but does not have to be a limit point of A. The inequality |x − c| < δ does
not require that x be different from c. Finally L is replaced by f(c).

What does continuity mean? We have defined continuity at a point of the domain of a function.
Essentially f is continuous at c if whenever x in the domain of f is close to c then f(x) is close
to f(c). Suppose there are no xs close to c, that is, suppose c is an isolated point of the domain.
Then f must be continuous at c.

Theorem 7.13. Let f : A→ R and let c ∈ A. If c is an isolated point of A, then f is continuous
at c. If c is a limit point of A, then f is continuous at c if and only if limx→c f(x) = f(c).

Proof. Recall that c is an isolated point of A if it is not a limit point of A. Thus if c is an isolated
point of A then there is a δ > 0 such that Nδ(c) ∩ A = {c}. If |x− c| < δ and x ∈ A, then x = c.
Hence |f(x)− f(c)| = 0 < ε for all ε > 0. Thus f is continuous at c.

Now assume that c is a limit point of A. If f is continuous at c then for a given ε > 0 there is
a δ > 0 such that for all x satisfying |x− c| < δ and x ∈ A it follows that |f(x)− f(c)| < ε. This
implies that limx→c f(x) = f(c).

Theorem 7.14. All polynomials are continuous at every real number and all quotients of polyno-
mials are continuous at every real number different from a root of the denominator polynomial.

Proof. This follows immediately from Theorem 7.8.

Example 7.15. Let us prove that f(x) = x2 is continuous for all x directly from the definition.
Let c be a real number. We show that f is continuous at c.

Suppose c = 0. Given ε > 0, let δ = min{ε, 1}. If |x−0| = |x| < δ then |x2−0| = |x2| < |x| < ε.

Now suppose c 6= 0. Given ε > 0, let δ = min
{

1, ε
2|c|+1

}
. If |x− c| < 1 then c− 1 < x < c+ 1 and

hence |x+ c| < 2|c|+ 1. If |x− c| < δ we have |x2 − c2| = |x− c||x+ c| <
(

ε
2|c|+1

)
(2|c|+ 1) = ε.

A very useful fact is that continuity is preserved under composition of functions.

Theorem 7.16. Let A,B ⊂ R and let c ∈ A. Let f : A → R, g : B → R, and assume that
f(A) ⊂ B. Suppose that f is continuous at c and that g is continuous at f(c). Then g ◦ f is
continuous at c.

Proof. Let ε > 0 be given. Since g is continuous at f(c), there is a β > 0 such that if |y− f(c)| < β
and y ∈ B, then |g(y) − g(f(c))| < ε. Since f is continuous at c, there is a δ > 0 such that if
|x− c| < δ and x ∈ A, then |f(x)− f(c)| < β. Combining the two sets of inequalities we have that
if |x− c| < δ and x ∈ A, then |g(f(x))− g(f(c))| < ε.

A form of Theorem 7.10 is applicable to continuous functions.

Theorem 7.17. Let f : A→ R be continuous on A ⊂ R and let limx→∞ xn = x for some sequence
{xn} contained in A. Assume that x is in A. Then limn→∞ f(xn) = f(x).

Theorem 7.18. Suppose f : K → R is continuous and K ⊂ R is compact. Then f(K) is also
compact.
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Proof. Continuity does not preserve boundedness. (For instance, f(x) = 1
x is continuous on (0, 1)

but its image is not bounded.) Thus it will be difficult to prove this result using the Heine-Borel
Theorem (Theorem 6.25). We need to go back to the definition of compactness. Let {yn} be a
sequence contained in f(K). For each n we choose an xn ∈ K such that f(xn) = yn. The sequence
{xn} has a subsequence that converges to a point of K since K is compact by assumption. We
will call the subsequence {xn}, the same as the original sequence. Let yn = f(xn). This defines a
subsequence of the original sequence in f(K). Since limx→∞ xn = x with x ∈ K and f is continuous
at x by assumption, we know that limx→∞ f(xn) = f(x) by the previous theorem. Thus f(x) is in
f(K) and is the limit of the subsequence of the original sequence.

Theorem 7.19. Let K be a non-empty compact set. Then K contains its least upper bound and
its greatest lower bound.

Proof. Since K is compact it is closed and bounded. Since K is non-empty, then K has both a
least upper bound and a greatest lower bound by the Completeness Axiom (Axiom 6). Let d be
the least upper bound of K. We will prove that the least upper bound of a set is either in the set
or is a limit point of the set. Suppose that a is the least upper bound for some set A and assume
that a is not an element of A. Then by the ε-criterion for least upper bounds (Theorem 3.5), for
each ε > 0 there is an x in A such that a − ε < x. Since a is not in A, it is not equal to x and
hence there is an element of A different from a in every ε-neighborhood of a. Therefore a is a limit
point of A. Since the set K is closed it contains all its limits points and hence d ∈ K. The proof
for the greatest lower bound is similar.

The first application of these two theorems is a very important result from Calculus.

Theorem 7.20 (Extreme Value Theorem). Let f : [a, b] → R be continuous. Then there exist
points c and d in [a, b] such that f(c) ≤ f(x) ≤ f(d) for all x ∈ [a, b]. The point c is called an
absolute, or global, minimum point of f on [a, b] and d is called an absolute, or global, maximum
point of f on [a, b].

Proof. We will just show the existence of the point d. Since f is continuous we know that f([a, b])
is compact. Thus it contains its least upper bound by the previous theorem. Call it y. Since
y ∈ f([a, b]) we are done, since y = f(d) for some d ∈ [a, b].

Definition 7.21 (Uniform Continuity). A function f is uniformly continuous on a set A if for
every ε > 0 there is a δ > 0 such that if |x− y| < δ and x, y ∈ A then |f(x)− f(y)| < ε.

Notice that this differs from continuity in that the choice of δ does not depend on the point in
the domain.

Example 7.22. The function f : [0, 3]→ R defined by f(x) = x2 is uniformly continuous on [0, 3].
Let ε > 0 be given and let x and y be any points in [0, 3]. Then

|f(x)− f(y)| = |x2 − y2|
= |x− y||x+ y|
≤ |x− y| (|x|+ |y|)
≤ 6|x− y|.

Let δ = ε
6 and we have uniform continuity.
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Theorem 7.23 (Criterion for non-uniform continuity). Let f : A→ R. There are two sequences in
A, {xn} and {yn}, and an ε0 > 0 such that limn→∞ |xn−yn| = 0 and for all n, |f(xn)−f(yn)| ≥ ε0
if and only if f is not uniformly continuous on A.

Proof. The theorem follows from negating the definition of uniform continuity. Given any δ > 0 we
can find an n such that |xn−yn| < δ and |f(xn)−f(yn)| ≥ ε0. This violates uniform continuity.

Theorem 7.24. If f : A → R is continuous and A is compact then f is uniformly continuous on
A.

Proof. We assume that f is not uniformly continuous and take two sequences, {xn} and {yn} in
A, and an ε0 > 0 such that limn→∞ |xn − yn| = 0 and |f(xn) − f(yn)| ≥ ε0 for all n. Since A is
compact there is a subsequence {xin} of {xn} that converges to x in A. Consider the corresponding
subsequence {yin} of {yn}. Since limn→∞ |xn−yn| = 0 we know that limn→∞ xin−yin = 0 also and
hence that limn→∞ yin = x By continuity since limn→∞ xin−yin = 0 then limn→∞ f(xin)−f(yin) =
0 which violates the ε0 condition.

Example 7.25. The function f : [0,∞)→ R defined by f(x) = x2 is continuous but not uniformly
continuous. Consider the sequences {xn} = {n} and {yn} =

{
n+ 1

n

}
. Then limn→∞ |xn − yn| =

limn→∞ 1
n = 0 but |f(xn)− f(yn)| =

∣∣∣n2 − (n+ 1
n

)2∣∣∣ =
∣∣n2 − n2 − 2− 1

n2

∣∣ = 2 + 1
n2 ≥ 2. Choosing

ε0 = 2 gives us non-uniform continuity.

Uniform continuity will become important when we deal later with the Riemann Integral.
We now prove another important theorem from Calculus the Intermediate Value Theorem.

The proof requires the notion of a connected set. For the real numbers, a connected set is simply
an interval. The idea is also important in higher dimensions and we give the definition that is used
in this more general setting.

Definition 7.26 (Connectedness). Let A and B be non-empty subsets of the real numbers. We
say that A and B are separated if both A ∩ B and A ∩ B are empty. A set C is disconnected if C
is the union of two separated sets. We say C is connected if C is not disconnected.

This is a complicated definition, saying that C is connected if it fails to have some non-obvious
property.

Example 7.27. Let A = (0, 1), B = (1, 2), and C = [1, 2). Then A and B are separated (because
A ∩ B = [0, 1] ∩ (1, 2) = ∅ and A ∩ B = (0, 1) ∩ [1, 2] = ∅) while A and C are not (because
A ∩ C = [0, 1] ∩ [1, 2) = 1 6= ∅).

Theorem 7.28. If f : A → R is continuous and B is a connected subset of A then f(B) is
connected.

Proof. This theorem tells us that a continuous function cannot rip a connected set into two sepa-
rated pieces. We proceed by contradiction. Assume that B is connected but f(B) is not. Then we
can write f(B) = U ∪ V where U and V are separated sets. Consider the sets X = f−1(U) ∩ B
and Y = f−1(V ) ∩ B. Then B = U ∪ V . Now suppose that X ∩ Y 6= ∅. Let a ∈ X ∩ Y . Then a
cannot be in both X and Y . If it were then we would have f(a) ∈ U and f(a) ∈ V but U and V
are disjoint sets. Thus a must be an element of Y and a limit point of X. We show that f(a) is a
limit point of U . Let ε > 0 be given. Then there is a δ > 0 such that if |x− a| < δ and x ∈ A then
|f(x) − f(a)| < ε. Since a is a limit point of X there must be a y in Nδ(a) ∩ X that is different
from a. Since a is in Y but not in X (it is a limit point of X but not in X), f(x) 6= f(a) because
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f(y) ∈ f(X) = U and f(a) ∈ f(Y ) = V . Thus for any ε > 0 we can find a point of f(X) that is in
Nε(f(a)) ∩ U and different from f(a). Thus f(a) is a limit point of U and U ∩ V 6= ∅. Therefore
U and V are not separated so f(B) is connected.

Theorem 7.29. A set C of real numbers is connected if and only if whenever a and b are points
of C with a < b and x is any real number satisfying a < x < b then x is a point of C.

Proof. Let C be a connected set and let a < b for two points in C. Let x satisfy a < x < b. We
must show that x ∈ C. Suppose it is not. Consider the sets U = C ∩ (−∞, x) and V = C ∩ (x,∞).
Then C = U ∩ V , U ∩ V = ∅, and U ∩ V = ∅. Thus C is the union of separated sets and is not
connected.

Now for the opposite implication. Suppose that C satisfies the property that all xs between any
two elements of C are also in C. We show that C is connected. Suppose that C is disconnected
and that C = U ∪ V where U and V are separated. Let a ∈ U and b ∈ V satisfy a < b. Consider
X = {x ∈ V | a < x}. The set X is non-empty (it contains b) and X is bounded below (by a).
Thus it has a greatest lower bound. Call it y. Then a < y < b or y = a or y = b. In any case
y ∈ C. Thus y ∈ U or y ∈ V , but not both. If y ∈ U then as the greatest lower bound of X it is
a limit point of V and hence U ∩ V 6= ∅. This violates our assumption. Thus y ∈ V . But by our
condition every z between a and y is in C. An element z cannot be in V . Thus it is in U . Thus y
is a limit point of U and hence U ∩ V 6= ∅. This is the final contradiction.

Now we have the very important:

Theorem 7.30 (Intermediate Value Theorem). Let f : [a, b] → R be continuous and let d be a
real number satisfying either f(a) < d < f(b) or f(b) < d < f(a). Then there is a real number c in
[a, b] such that f(c) = d.

Proof. Assume f(a) < d < f(b). We know that [a, b] is connected by Theorem 7.29, and hence
that f([a, b]) is connected by Theorem 7.28. Using Theorem 7.29 again we find that d ∈ f([a, b])
and hence that d = f(c) for some c in [a, b].
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7.1 Exercises

Exercise 7.1. Prove that limx→3 5x− 6 = 9.

Exercise 7.2. Prove that limx→−3 x2 = 9.

Exercise 7.3. Prove that limx→3
1
x = 1

3 .

Exercise 7.4. Prove that limx→0 |x| = 0.

Exercise 7.5. Prove that limx→3 x
3 + 1 = 28.

Exercise 7.6. A function f(x) is said to be bounded on a set A ⊂ R if there is a positive real
number M such that for all a in A, |f(a)| ≤ M . Suppose that A is a set of real numbers, c is
a limit point of A, f is bounded on A, g(x) is defined on A, and limx→c g(x) = 0. Prove that
limx→c f(x)g(x) = 0.

Exercise 7.7. Let f : R → R be continuous on R. Let K = {x ∈ R | f(x) = 0}. Prove that K is
closed. (Hint: Begin with “Let c be a limit point of K.” What do you have to prove about f(c)?)

Exercise 7.8. Let f : R→ R and let c be a real number, 0 < c < 1, such that |f(x)−f(y)| ≤ c|x−y|
for all x and y in R. Show that f is continuous on R.

Exercise 7.9. Let f : [1, 2]→ R be defined by f(x) = 1
x . Show that f is uniformly continuous on

[1, 2] by finding δ > 0 that satisfies the definition fo ra given ε > 0. More specifically find δ as a
function of ε.

Exercise 7.10. Let f(x) be defined as below. Show that f is not continuous at x = 0.

f(x) =

{
sin
(
1
x

)
if x 6= 0

0 if x = 0

Exercise 7.11. Let f(x) = 1
x on (0,∞). Show that f is not uniformly continuous on that interval.

Exercise 7.12. Suppose that f : A → R is uniformly continuous and that {xn} is a Cauchy
sequence in A ⊂ R. Prove that {f(xn)} is a Cauchy sequence.

Exercise 7.13. Let f(x) = x2 − 2x. Let d be a real number satisfying −1 < d < 15. Explicitly
find a c satisfying 1 < c < 5 such that f(c) = d.

Exercise 7.14. Let f : R→ R be defined by f(x) = 0 if x is a rational number and f(x) = 1 if x
is an irrational number. Show that limx→c f(x) does not exist for any real number c.

Exercise 7.15. Let f : R → R be defined by f(x) = 0 if x is a rational number and f(x) = x if
x is an irrational number. Show that limx→0 f(x) = 0 and that limx→c f(x) does not exist for any
real number c different from 0.

Exercise 7.16. Let f : R → R and assume that limx→0 f(x) = 3. Show that there is an ε > 0
such that if 0 < |x− 0| < ε then f(x) > 1.

Exercise 7.17. Suppose that A is a non-empty set of real numbers that is bounded above. Let a
be the least upper bound of A and assume that a is not in A. Prove that a is a limit point of A.
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Chapter 8

The Derivative

We begin with the definition of the derivative of a function at a point in its domain. Note that the
domain is required to be an interval. We are not defining the derivative at an isolated point of the
domain.

Definition 8.1 (Differentiable). Let A be an interval. Let f : A → R and let a ∈ A. The

derivative of f at a is limx→a
f(x)−f(a)

x−a (if the limit exists). If the limit exists we denote it by

f ′(a) = limx→a
f(x)−f(a)

x−a and say that f is differentiable at a. If the limit does not exist then f is
not differentiable at a.

f(x)

tangent line

(a, f(a))

(b1, f(b1))

(b2, f(b2))

(b3, f(b3))

(b4, f(b4))

Figure 8.1

Remark 8.2. Several secant lines through the point (a, f(a)) are shown in Figure 8.1; the second
point on f(x) for each is marked (bi, f(bi)) and as i increases, bi approaches a. The line tangent
to f(x) at x = a is shown in red, and the figure implies that as bi approaches a, the corresponding
secant lines approach the tangent line. Thus the limit of the slopes of the secant lines approaches
the slope of the tangent line.

Remark 8.3. Letting h = x− a in the above definition yields f ′(a) = limh→0
f(a+h)−f(a)

h . This is
often a very useful form for computing the derivative.

69
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f(x)

secant line

(a, f(a))

(x, f(x)) = (a+ h, f(a+ h))

a x

x− a = h

Figure 8.2

Remark 8.4. Figure 8.2 depicts the secant line to the graph of f(x) through the points (a, f(a))
and (x, f(x)) on the graph. It also shows x replaced by a+h. As x approaches a, or equivalently as
h approaches 0, this secant line bends towards the tangent line at a. Thus intuitively the derivative
measures the slope of the tangent line since it is the limit of the slopes of the secant lines.

Definition 8.5 (Derivative of a Function). Let f : A→ R. The function f ′(x) = limh→0
f(x+h)−f(x)

h
is called the derivative of f(x). If f ′(x) exists for all x ∈ A then we say that f is differentiable on
A.

Example 8.6.

1. Let f(x) = x2 for all real numbers x. We compute f ′(a) using both forms of the definition.

f ′(a) = lim
x→a

f(x)− f(a)

x− a = lim
x→a

x2 − a2
x− a = lim

x→a

(
x− a
x− a

)
(x+ a) = 2a

f ′(a) = lim
j→0

f(a+ h)− f(a)

h
= lim

h→0

(a+ h)2 − a2
h

= lim
h→0

a2 + 2ah+ h2 − a2
h

= lim
h→0

(
h

h

)
(2a+ h)

= 2a

2. Let f(x) = |x| for all real numbers x. Then f ′(0) does not exist.

f ′(0) = lim
h→0

|0 + h| − |0|
h

= lim
h→0

|h|
h
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This limit does not exist since we can write |h|h =

{
−1 h < 0

1 h > 0
.

Theorem 8.7. If f : A→ R is differentiable at a ∈ A then f is continuous at a ∈ A.

Proof. Since a is a limit point of A, it suffices to show that limx→a f(x) = f(a) or what is equivalent

limx→a f(x) − f(a) = 0. We know that limx→a
f(x)−f(a)

x−a = f ′(a) and that limx→a x − a = 0. The
limit of the product equals the product of the limits. Thus

lim
x→a

(
f(x)− f(a)

x− a

)
(x− a) = f ′(a) · 0 = 0 = lim

x→a
f(x)− f(a).

Now a theorem that contains the product rule, quotient rule, and the power rule.

Theorem 8.8. Suppose that f and g are differentiable at a and that r is a real number. Then all
of the following rules are true for f and g at a.

(1) (rf)′(a) = rf ′(a)

(2) (f + g)′(a) = f ′(a) + g′(a)

(3) (fg)′(a) = f ′(a)g(a) + f(a)g′(a)

(4) If g(a) 6= 0, then
(
f
g

)′
(a) = f ′(a)g(a)−f(a)g′(a)

(g(a))2
.

(5) If n ∈ Z and f(x) = xn then f ′(x) = nxn−1.

Proof. We will prove (3), the product rule and (5), the power rule.
For (3):

(fg)′(a) = lim
x→a

f(x)g(x)− f(a)g(a)

x− a = lim
x→a

f(x)g(x)− f(a)g(x) + f(a)g(x)− f(a)g(a)

x− a
= lim

x→a

(
f(x)− f(a)

x− a

)
g(x) + f(a)

(
g(x)− g(a)

x− a

)
= f ′(a)g(a) + f(a)g′(a).

The only subtlety is that limx→a g(x) = g(a) because g is continuous at a. (Why?)
For (5): Let n = 0. Then f(x) = 1 for all x and hence the derivative is the zero function as the

theorem requires. We prove the result for n ∈ N by induction.
The base case is when n = 1. A very simple limit calculation shows that if f(x) = x, then

f ′(x) = 1. For the induction step, assume that if f(x) = xk, then f ′(x) = kxk−1. Now let
g(x) = xk+1 = x · xk. By the product rule g′(x) = 1 · xk + x · kxk−1 = xk + kxk = (k + 1)xk, as
required.

Now for the rest of the integers. Assume that n < 0. Let m = −n. Then f(x) = xn = x−m =
1
xm . We apply the quotient rule to f in this form.

f ′(x) =
0 · xm − 1 ·mxm−1

(xm)2
=
−mxm−1
x2m

=
−m
xm+1

=
n

x−n+1
= nxn−1

Theorem 8.9 (The Chain Rule). Let f : A → R, g : B → R, and f(a) ⊂ B. Suppose that
f is differentiable at c and that g is differentiable at f(c). Then g ◦ f is differentiable at c and
(g ◦ f)′(c) = g′(f(c))f ′(c).
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Proof. We first define two new functions closely related to f and g:

f̂(x) =

{
f(x)−f(c)

x−c x 6= c

f ′(c) x = c
and ĝ(y) =

{
g(y)−g(f(c))
y−f(c) y 6= f(c)

g′(f(c)) y = f(c)
.

Since both f and g are differentiable at the appropriate points these functions are clearly continuous
at x = c and at y = f(c). Consider the product:

f̂(x)ĝ(f(x)) =

{(
f(x)−f(c)

x−c

)(
g(f(x))−g(f(c))
f(x)−f(c)

)
x 6= c

f ′(c)g′(f(c)) x = c
.

If we could claim that f(x) 6= f(c) in a neighborhood of c, we would be done since that would
reduce f̂(x)ĝ(f(x)) to

f̂(x)ĝ(f(x)) =

{(
g(f(x))−g(f(c))

x−c

)
x 6= c

f ′(c)g′(f(c)) x = c
.

Since both f̂ and ĝ are continuous at c, so is the function f̂(x)ĝ(f(x)) and hence

lim
x→c

f̂(x)ĝ(f(x)) = lim
x→c

g(f(x))− g(f(c))

x− c = f ′(c)g′(f(c)) = (g ◦ f)′(c).

However it is possible that in every neighborhood of c there is an x in A, different from c satisfying
f(x) = f(c). Let {xn} be a sequence of such points that converges to c. Then

lim
n→∞

f(xn)− f(c)

xn − c
= lim

n→∞
0

xn − c
= 0.

But that limit is f ′(c). Now consider

lim
n→∞

g(f(xn))− g(f(c)) = g(f(c))− g(f(c)) = 0.

This gives us a sequence {yn} in B such that (g ◦ f)′(c) = limn→∞
g(yn)−g(f(c))
yn−f(c) = 0. Thus 0 =

(g ◦ f)′(c) = 0 · g′(f(c)).

Definition 8.10 (Local Maxima and Minima). Let f be defined on the open interval (a, b). A
point c of the interval is a local maximum point of f if there is an open interval I contained in (a, b)
such that c is in I and f(x) ≤ f(c) for all x in I. The number f(c) is called a local maximum value
of f . A similar definition holds for local minimum. The word relative is often used instead of the
word local.

Definition 8.11 (Absolute Maxima and Minima). Let f be defined on a set K. The function f
has an absolute maximum point at c in K if f(c) ≥ f(x) for all x in the set K. In this case f(c)
is called the absolute maximum value of f on K. A similar definition holds for absolute minimum.
The word global is often used instead of absolute.

Definition 8.12 (Monotonic Functions). Let f be defined on an interval I. The function f is
said to be increasing on I if whenever x1 < x2 for points in I then f(x1) < f(x2). Reversing the
inequality to f(x1) > f(x2) yields the definition of a decreasing function. If the strict inequalities
are replaced by greater than or equal or by less than or equal we say that f is either non-decreasing
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or non-increasing, respectively. A function fitting any one of these definitions is referred to as
monotonic.

Lemma 8.13. Suppose that f is differentiable at c and that f ′(c) > 0. Then there is a δ > 0 such
that for all h satisfying 0 < h < δ it follows that f(c− h) < f(c) < f(c+ h). (If f ′(c) < 0 we have
f(c− h) > f(c) > f(c+ h).)

Proof. Assume that f ′(c) = limh→0
f(c+h)−f(c)

h > 0. Since the limit is positive we know that there is

a δ > 0 such that f(c+h)−f(c)
h > 0 for all 0 < |h| < δ. If h > 0 then the numerator f(c+h)−f(c) > 0

or f(c) < f(c+ h). We have half of our inequality. Now assume that h > 0 and let t = −h.

f(c+ t)− f(c)

t
=
f(c− h)− f(c)

−h > 0

Since the denominator is negative, so is the numerator and hence f(ch) < f(c).

Theorem 8.14 (Fermat). Let f : (a, b)→ R with c ∈ (a, b). Suppose that f has a local maximum
or local minimum point at c and that f is differentiable at c. Then f ′(c) = 0.

Proof. There are four possibilities for f ′(c): it is positive, it is negative, it does not exist, or it is
zero. If f ′(c) > 0 then Lemma 8.13 says that c is not a local maximum or minimum point of f .
The same holds for the case that f ′(c) < 0. Since we are assuming that f is differentiable at c the
only remaining possibility is that f ′(c) = 0.

Theorem 8.15 (Rolle’s Theorem). Let f be continuous on [a, b], differentiable on (a, b), and satisfy
f(a) = f(b). Then for some c in (a, b), f ′(c) = 0.

Proof. By the Extreme Value Theorem (Theorem 7.20), f has both an absolute maximum point
and an absolute minimum point in the interval [a, b]. Suppose neither of these points occurs in the
interior of the interval. Then a and b are the absolute maximum and minimum points of f and
hence f must be constant on the interval. Let c be the midpoint of the interval. Then f ′(c) = 0.

Now assume that one of either the maximum or minimum points occurs at an interior point c
of the interval. Then c will be a local maximum or local minimum point and hence f ′(c) = 0 by
Fermat’s Theorem (Theorem 8.14).

The next theorem, the Mean Value Theorem, is a very important result. It is the basis for
the study of ordinary differential equations and various theoriest of approximation of functions via
Taylor polynomials. Basically it takes our knowledge of the derivative of a function at individual
points and extends it to knowledge about the function over an open interval. The proof of this
theorem is essentially the proof of Rolle’s Theorem (Theorem 8.15) with a secant line replacing the
x-axis.

Theorem 8.16 (The Mean Value Theorem). Let f be continuous on [a, b] and differentiable on

(a, b). Then there is a c in (a, b) satisfyingf ′(c) = f(b)−f(a)
b−a .

Proof. The Mean Value Theorem is essentially Rolle’s Theorem tilted. The quantity f(b)−f(a)
b−a is

the slope of the secant line joining (a, f(a)) and (b, f(b)). Let L(x) be the equation of that secant
line. The equation for L is:

y = L(x) =

(
f(b)− f(a)

b− a

)
(x− a) + f(a).
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Consider the function H : [a, b] → R defined by H(x) = f(x) − L(x). The function H is clearly

continuous on the closed interval and H ′(x) = f ′(x)− f(b)−f(a)
b−a by a simple calculation. Computing

values of H we have:

H(a) = f(a)−
(
f(b)− f(a)

b− a

)
(a− a)− f(a) = 0 and

H(b) = f(b)−
(
f(b)− f(a)

b− a

)
(b− a)− f(a) = 0.

Thus the function H satisfies the hypotheses of Rolle’s Theorem. There is a c in the interior of the
interval at which H ′(c) = 0. Thus H ′(c) = f ′(c)− f(b)−f(a)

b−a = 0, or f ′(c) = f(b)−f(a)
b−a .

The application we make of the Mean Value Theorem (Theorem 8.16) is an important result
used in first year calculus, relating a monotonic function and the sign of its derivative.

Theorem 8.17. Let I be an open interval.

(1) If f ′(x) > 0 for all x ∈ I, then f is increasing on I.

(2) If f ′(x) < 0 for all x ∈ I, then f is decreasing on I.

(3) If f ′(x) = 0 for x ∈ I, then f is constant on I.

Proof. We prove (1) only. The other two parts are very similar. Let x1, x2 ∈ I and x1 < x2. Since
f is differentiable on the open interval I it is continuous on I. We apply the Mean Value Theorem
to f over the interval [x1, x2]. There is a c satisfying x1 < c < x2 such that f ′(c) = f(x2)−f(x1)

x2−x1 .
Since the left hand side is assumed to be positive by hypothesis and the denominator of the right
hand side is positive by assumption it follows that f(x1) < f(x2) and hence that f is increasing on
I.

The next theorem looks like the Mean Value Theorem (Theorem 8.16) from the standpoint
of two functions, f and g, and shows that there is a single point, c, in the given interval that
simultaneously satisfied the Mean Value Theorem for both these functions.

Theorem 8.18 (The Generalized Mean Value Theorem). Let f and g be continuous on [a, b] and
differentiable on (a, b). Then there is a c in (a, b) such that f ′(c)(g(b)− g(a)) = g′(c)(f(b)− f(a)).

For a proof, see Exercise 8.15. The Generalized Mean Value Theorem (Theorem 8.18) is the
means by which we can proof the following version of L’Hospital’s Rule (Theorem 8.19).

Theorem 8.19 (L’Hospital’s Rule). Let f, g : A → R and let c be a limit point of A. Further
suppose that limx→c f(x) = limx→c g(x) = 0 and that both limx→c f ′(x) and limx→c g′(x) exist.

Then limx→c
f(x)
g(x) = limx→c

f ′(x)
g′(x) .

A final, though less direct, application of the Mean Value Theorem (Theorem 8.16) is called
Daboux’s Theorem, or the Intermediate Value Theorem for Derivatives (Theorem 8.20). It leads
us to deeper insights about functions differentiable on open intervals.

Theorem 8.20 (Darboux’s Theorem, Intermediate Value Theorem for Derivatives). Let f : [a, b]→
R be differentiable on [a, b]. Assume that d is a real number satisfying either f ′(a) < d < f ′(b) or
f ′(b) < d < f ′(a). Then there is a c ∈ [a, b] such that f ′(c) = d.
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Proof. We cannot use the Intermediate Value Theorem (Theorem 7.30) because we know of an
example of a function that is differentiable on an interval but whose derivative is not continuous
there.

Assume that f ′(a) < d < f ′(b). Define g(x) = f(x) − dx. Then g is differentiable on [a, b]
and g′(x) = f ′(x) − d. We want to find c ∈ (a, b) such that g′(c) = 0. This is equivalent to
g′(c) = f ′(c) − d = 0 or f ′(c) = d. Since g is continuous on the interval, if g has a maximum or
minimum point at c in (a, b) then g′(c) = 0. Assume that the maximum and minimum values of g
are assumed at a and at b, the endpoints. Since g′(a) < 0, there must be a point, x, close to a such
that g(a) > g(x). Thus a cannot be the minimum point. Since g′(b) > 0 there must be a point,
y, close to b such that g(y) < g(b). Thus b cannot be the minimum point. This contradicts our
assumption. Thus g must have a minimum point, c, in (a, b) and g′(c) = 0.
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8.1 Exercises

Exercise 8.1. Let f(x) = 1
(x−1)3 on (1,∞). Using the definition of the derivative, find f ′(c) for

c > 1.

Exercise 8.2. Show that limx→0 cos
(
1
x

)
does not exist.

Exercise 8.3. Prove that limx→0 x sin
(
1
x

)
= 0.

Exercise 8.4. Given that limx→0
sinx
x = 1 and limx→0

1−cosx
x = 0, compute the derivative of sinx

using the definition.

Exercise 8.5. Using the definition of the derivative, show that f(x) = 3
√
x is not differentiable at

x = 0. Find the equation of the tangent line to the graph of f(x) at (0, 0) (if possible).

Exercise 8.6. For a given function, f(x), define F (x) = limh→0
f(x+h)−f(x−h)

2h .

a) Compute F (x) for f(x) = x2.

b) Now let f(x) = |x| and compute F (0).

c) Is F (x) the derivative of f(x)? Why or why not?

Exercise 8.7. Let f(x) =

{
x sin

(
1
x

)
if x 6= 0

0 if x = 0
. Show that f is continuous for all x. Show that

f ′(0) does not exist.

Exercise 8.8. Let f(x) = ax2 + bx+ c where a, b, c are real numbers. Using the limit definition of
the derivative find f ′(x).

Exercise 8.9. Let f(x) =
√

2x. Using the limit definition of the derivative find f ′(x). What is the
domain of f ′(x)?

Exercise 8.10. Verify the Mean Value Theorem (Theorem 8.16) for f(x) = x3−6x+2 over [−2, 0].

Exercise 8.11. Find the largest intervals on which f(x) = x3 − 3x is increasing.

Exercise 8.12. Find the local maximum and minimum points of f(x) = |4− x2|.

Exercise 8.13. For each example, precisely explain why the function you found fits the requested
description or why no such function can exist. For each that does exist, provide a graph and a
formula.

a) Give an example of a function f : R → R that is continuous everwhere but which is not
differentiable at exactly 1 point.

b) Let n ∈ N. Give an example of a function f : R→ R that is continuous everywhere but which
is not differentiable at exactly n points.

c) Give an example of a function f : R → R that is continuous everywhere but which is not
differentiable at infinitely many points and which is differentiable at infinitely many (other)
points.

d) Give an example of a function f : R → R that is differentiable everywhere but which is not
continuous at exactly 1 point.
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e) Let n ∈ N. Give an example of a function f : R → R that is differentiable everywhere but
which is not continuous at exactly n points.

f) Give an example of a function f : R → R that is differentiable everywhere but which is not
continuous at infinitely many points and which is continuous at infinitely many (other) points.

g) Give an example of a function f : (0, 1)→ R that is continuous on its domain and that does
not achieve an absolute maximum on [0, 1].

h) Give an example of a function f : [0, 1]→ R that is continuous on its domain and that does
not achieve an absolute maximum on (0, 1).

Exercise 8.14. Verify the Generalized Mean Value Theorem (Theorem 8.18) for f(x) = 1
x and

g(x) = 1
x2

over [1, 4].

Exercise 8.15. Prove the Generalized Mean Value Theorem (Theorem 8.18) (Hint: Apply the
Mean Value Theorem (Theorem 8.16) to h(x) = [f(b) − f(a)]g(x) − [g(b) − g(a)]f(x). Make sure
to show that all the hypotheses hold.)

Exercise 8.16. Use the Chain Rule, the Product Rule, and the fact that the derivative of f(x) = 1
x

is f ′(x) = −1
x2

to prove the Quotient Rule, namely that
(
f
g

)′
= f ′(x)g(x)−f(x)g′(x)

(g(x))2
wherever f and g

are differentiable and g is not 0.

Exercise 8.17. There are three hypotheses for Rolle’s Theorem (Theorem 8.15), namely for f :
[a, b]→ R (the real numbers):

a) f is continuous on [a, b],

b) f is differentiable on (a, b), and

c) f(a) = f(b).

Find examples of three different functions and intervals [a, b] for which Rolle’s Theorem fails. These
functions should satisfy two of the hypotheses and fail for the third. Each function should fail a
different hypothesis.
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Chapter 9

The Riemann Integral

In integral calculus students are usually taught is the Riemann integral. The usual introduction
to this integral is via the area problem — that is, How does one find the area of a region defined
over a closed interval by a curve in the xy-plane? In this section we define the Riemann integral
by defining underestimates (lower sums) and overestimates (upper sums) of such areas. Later we
will define other estimates of these areas using Riemann sums. We close this chapter with the
Fundamental Theorem of Calculus which brings together most of the material of this book.

Definition 9.1 (Partition of an Interval). Let [a, b] be a non-empty closed interval. A partition of
[a, b] is a set P = {x0, x1, x2, . . . , xn} satisfying

a = x0 < x1 < · · · < xn−1 < xn = b.

The kth subinterval of P is the closed interval [xk−1, xk] whose width is given by ∆xk = xk−xk−1.
The mesh of P is the maximum of the subinterval lengths.

Note that P contains n+ 1 distinct real numbers and that x0 = a and xn = b. The partition P
defines n closed subintervals.

[a, b]

a b

[a, x1], [x1, x2], . . . , [xn−1, b]

a = x0 x1 x2 xn−1 b = xn

Figure 9.1

Remark 9.2. Figure 9.1 depicts a closed interval [a, b] and a partition of [a, b], given by {a =
x0, x1, x2, . . . , xn−1, xn = b}. This partition defines n closed subintervals [a, x1], [x1, x2], . . . , [xn−1, b]
with a union equal to the entire interval [a, b]. Adjacent subintervals intersect only in the common
endpoint.

79
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Example 9.3. Let [a, b] = [3, 7] and let P = {2, 4.5, 4.9, 5.6, 6, 7}. Then

∆x1 = 4.5− 3 = 1.5

∆x2 = 4.9− 4.5 = 0.4

∆x3 = 5.6− 4.9 = 0.7

∆x4 = 6− 5.6 = 0.4

∆x5 = 7− 6 = 1.0

The mesh of P is 1.5. Note that 73 = 1.5+0.4+0.7+0.4+1.0 = 4. This means that the subintervals
of the partition P cover the entire interval [a, b], leaving no point out.

In general:
n∑
k=1

∆xk = xn − x0 = b− a.

Definition 9.4 (Lower and Upper Sums). Let f be a bounded, real-valued function on [a, b] and
let P be a partition of the interval. For each k = 1, 2, . . . , n define

mk = glb{f(x) | x ∈ [xk−1, xk]} and Mk = lub{f(x) | x ∈ [xk−1, xk]}.

Given these quantities, define the lower and upper sums of f with respect to the partition P by:

L(f, P ) =
m∑
k=1

mk∆xk (lower sum) and U(f, P ) =
n∑
k=1

Mk∆xk (upper sum).

Remark 9.5. It is not immediately obvious that the quantities mk and Mk exist. That will be
part of the work of the first theorem of the chapter. In the theorem, their existence follows from
the requirement that the function, f , be bounded on the interval.

Theorem 9.6. Let f be a bounded function on [a, b] and let P = {x0, x1, x2, . . . , xn} be a partition
of the interval. The quantities mk and Mk are defined and L(f, P ) ≤ U(f, P ).

Proof. Since f is a bounded function on each subinterval the greatest lower bound and least upper
bound of the set of its values on the subintervals both exist by the Completeness Axiom (Axiom 6).
The set {f(x)|x ∈ [xk−1, xk]} is non-empty since it contains the number f(xk) and is bounded both
above and below since f is a bounded function. Since mk ≤Mk for each k, it follows that

L(f,P) =
n∑
k=1

mk∆xk ≤
n∑
k=1

Mk∆xk = U(f,P).

Example 9.7. Let [a, b] = [3, 7] and P = {3, 4.5, 4.9, 5.6, 6, 7} as in Example 9.3. Finally let
f(x) = x2 + 2x on [3, 7]. Then we can calculate the upper and lower bounds of f(x) over each
subinterval in P , and create a table to track our calculations. This makes the calculation of L(f,P)
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and U(f,P) tidy.

k [xk−1, xk] ∆xk mk mk∆xk Mk Mk∆xk
1 [3, 4.5] 1.5 15 22.5 29.25 43.875
2 [4.5, 4.9] 0.4 29.25 11.7 33.81 13.524
3 [4.9, 5.6] 0.7 33.81 23.667 42.56 29.792
4 [5.6, 6] 0.4 42.56 17.024 48 19.2
5 [6, 7] 1 48 48 63 63

L(f,P) = 168.62 U(f,P) = 216.62

The upper and lower sums come from adding entries in the pertinent columns. Here, L(f,P) =
168.62 and U(f,P) = 216.62.

3 4.5 4.9 5.6 6.7 7

15

29.25

33.81

42.56

58.29

63

Figure 9.2

Definition 9.8 (Refinement of a Partition). Let P and Q be partitions of [a, b]. We call Q a
refinement of P if P ⊂ Q.

It initially sounds funny that the larger set is the refinement, but think about the picture of P
and Q on the real line. The subintervals of Q are smaller than those of P, because there are more
endpoints in the set Q.
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Theorem 9.9. Let f be a bounded function on [a, b] and let P and Q be partitions of [a, b] with
Q a refinement of P. Then L(f,P) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f,P).

Proof. We will prove the leftmost inequality. The middle inequality has already been shown and
the rightmost is very similar to the leftmost.

Since both P and Q are finite sets it suffices to prove the inequality for the case in which Q
contains one more point than P. Let Q = P ∪ {y} where xk−1 < y < xk. The lower sums over P
and Q are equal except over the subinterval [xk−1, xk].

mk = min{glb{f(x)|x ∈ [xk−1, y]}, glb{f(x)|x ∈ [y, xk]}}

mk∆xk = mk ((y − xk−1) + (xk − y))

≤ glb {f(x)|x ∈ [xk−1, y]} (y − xk−1) + glb {f(x)|x ∈ [y, xk]} (xk − y)

The right hand side is the contribution to the lower sum over Q of the two subintervals [xk−1, y] and
[y, xk]. The left hand side is the contribution to the lower sum over P from the subinterval [xk−1, y].
Since all the other terms in the two lower sums are the same it follows that L(f,P) ≤ L(f,Q).

xk−1 y xk

f(x)

Decrease of the
upper sum

Increase of the
lower sum

Figure 9.3

Remark 9.10. Notice that the greatest lower bound of the value of f is greater on the interval
[y, xk] than it is on the interval [xk−1, xk]. This leads to a greater lower sum over the new partition,
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the increase being the area of the shaded portion over the second interval. A similar analysis holds
for the decrease in the upper sum by the area in the other shaded rectangle.

Theorem 9.11. Let P and Q be partitions of [a, b]. Then P ∪Q is a refinement of both P and Q.
Further, L(f,P) ≤ U(f,Q).

Proof. Let R = P ∪Q. By the previous theorem L(f,P) ≤ L(f,R) and also U(f,R) ≤ U(f,Q) so
the result is a matter of putting the two inequalities together to get

L(f,P) ≤ L(f,R) ≤ U(f,R) ≤ U(f,Q).

Remark 9.12. At first glance, Theorems 9.9 and 9.11 seem to say the same thing. In Theorem 9.9,
the upper and lower sums with respect to a partition P and a refinement are compared, but in
Theorem 9.11, the upper and lower sums of two potentially incomparable partitions are compared.
Even if the partitions themselves are not comparable, a lower sum is still less than or equal to an
upper sum.

Definition 9.13 (The Riemann Integral). Let f be a bounded function on [a, b] and let P be the set
of all partitions of the interval. Define the lower integral of f over [a, b] by L(f) = lub{L(f,P)|P ∈
P} and the upper integral of f over [a, b] by U(f) = glb{U(f,P)|P ∈P}.

We say that f is Riemann-integrable over [a, b] if L(f) = U(f) and denote the common value

by
∫
f or

b∫
a
f(x) dx.

Remark 9.14. Again it is not obvious that the upper and lower integrals exist. Again their
existence comes from the boundedness of f . When the function f is unbounded we enter the realm
of what is known as the Improper Integral.

Theorem 9.15. Let f be a bounded function on [a, b]. Then both the upper and lower integrals
of f exist.

Proof. The set of all lower sums of f and the set of all upper sums over all partitions of [a, b] are
both clearly non-empty. Let P = {a, b} be a partition of [a, b]. Then both L(f,P) and U(f,P)
exist. Thus the sets of lower sums and upper sums are non-empty. By Theorem 9.11 above the set
of lower sums is bounded above by any upper sum and the set of upper sums is bounded below
by any lower sum. Thus by the Completeness Axiom (Axiom 6) the lower integral and the upper
integral both exist.

The following theorem is extremely useful for determining if a function is Riemann-integrable
over a given closed interval.

Theorem 9.16. A function f is Riemann-integrable over [a, b] if and only if for each ε > 0 there
is a partition, Pε, such that U(f,Pε)− L(f,Pε) < ε.

Proof. For the forward direction: We assume that f is Riemann integrable over [a, b] and hence
that L(f) = U(f). Let ε > 0 be given. Recall Theorem 3.5 and its corollary, Corollary 3.6. Since
L(f) = lub{L(f,P)|P ∈ P} there is a partition P1 satisfying L(f) − ε

2 < L(f,P1). Similarly
since U(f) = glb{U(f,P)|P ∈ P} there is a partition P2 satisfying U(f) + ε

2 > U(f,P2). Let
Pε = P1 ∪ P2. Then combining inequalities and using the fact that Pε is a refinement of P1 and
P2 yields

L(f)− ε

2
< L(f,P1) ≤ U(f,P2) < U(f) +

ε

2
.
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Then
U(f,Pε)− L(f,Pε) < U(f) +

ε

2
−
(
L(f)− ε

2

)
= ε

since U(f) = L(f).

For the second direction: Let ε > 0 be given. Let Pε be a partition satisfying U(f,Pε) −
L(f,Pε) < ε. We have the following chain of inequalities:

L(f,Pε) ≤ L(f) ≤ U(f) ≤ U(f,Pε).

Since the outer two are within ε of each other so are the inner two. Thus we have |U(f)−L(f)| < ε
for all ε > 0. Thus they are equal and f is Riemann integrable.

With this theorem in hand we can show that two large classes of bounded functions are Riemann
integrable.

Theorem 9.17. If f is continuous on [a, b] then it is Riemann-integrable over [a, b].

Proof. If f is continuous on [a, b], then it is uniformly continuous there. (See Theorem 7.24.) Let
ε > 0 be given. Then by uniform continuity there is a δ > 0 such that if |x− y| < δ and x, y ∈ [a, b]
then |f(x) − f(y)| < ε

b−a . Let Pε be any partition of [a, b] such that ∆xk < δ for all k. Since f
takes on its maximum and minimum values at points in every closed subinterval (by the Extreme
Value Theorem, Theorem 7.20) we have that

Mk −mk = |f(uk)− f(vk)| <
ε

b− a
where uk and vk are points in [xk−1, xk] where f takes on its maximum and minimum values. Then

U(f,Pε)− L(f,Pε) =
n∑
k=1

(Mk −mk)∆xk

<
n∑
k=1

(
ε

b− a

)
∆xk

=

(
ε

b− a

) n∑
k=1

∆xk

=

(
ε

b− a

)
(b− a) = ε.

Hence f is Riemann-integrable on the interval.

Example 9.18. Let f(x) = 2x3 + 3x on [0, 2] and let ε = 0.01. Use Theorem 9.17 to find a
partition P on [0, 2] so that |U(f,P)− L(f,P)| < 0.01.

First we need to find a δ > 0 for the given ε that demonstrates the uniform continuity of f over
the interval. If x, y ∈ [0, 2] then

|f(x)− f(y)| = |2x2 + 3x− 2y2 − 3y|
= |x− y||2x+ 2y + 3|
≤ 11|x− y|
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since |2x+ 2y + 3| ≤ 11 for all x and y in the interval. Given ε = 0.01, if

δ =
ε

22
=

0.01

22
= 0.00045454545 · · ·

then whenever |x − y| < δ, it follows that |f(x) − f(y)| < ε
2 = ε

2−0 . Choosing δ = 0.0002 will

guarantee that |f(x)− f(y)| < 0.01
2 .

Choose a partition of [0, 2] such that each subinterval has length less than 0.0004. For example
the uniform partition of [0, 2] that breaks the interval into 10, 000 equal-length subintervals will
result in a subinterval width of ∆xk = 0.0002 for all k, less than our needed δ.

Theorem 9.19. If f is monotonic on [a, b], then f is Riemann-integrable on [a, b].

Proof. Assume that f is non-decreasing on [a, b]. Let ε > 0 be given. Let n be a natural number

satisfying (b−1)(f(b)−f(a))
n < ε. Let Pε be any partition of [a, b] with exactly n subintervals of equal

length. Then ∆xk = b−a
n for all k. Consequently,

U(f,Pε)− L(f,Pε) =

n∑
k=1

(f(xk)− f(xk−1)∆xk

=
b− a
n

n∑
k=1

(f(xk)− f(xk−1))

=
(b− a)(f(b)− f(a))

n
< ε.

This proof depends on the fact that the maximum value of f occurs at the right endpoint of each
subinterval and the minimum value at the left endpoint. Thus

n∑
k=1

(f(xk)− f(xk−1)) = (f(x1)− f(a)) + (f(x2)− f(x1)) + · · ·+ (f(b)− f(xn−1))

= f(b)− f(a).

Example 9.20. Repeat Example 9.18 except use Theorem 9.19 to determine the partition. The
quantity U(f,Pε)− L(f,Pε) equals

U(f,Pε)− L(f,Pε) =
(b− a)(f(b)− f(a))

n
=

2 · 14

n
=

28

n
.

This must be less than 0.01. Then
28

n
< 0.01 =

1

100
,

or 2, 800 < n. Choose n = 3, 000.

Theorem 9.21. Suppose that f is integrable on [a, b] and that a < c < b. Then f is integrable on

both [a, c] and [c, b] and further
∫ b
a f =

∫ c
a f +

∫ b
a f .

Proof. The proof follows simply from including c in every partition P of [a, b] and making the
appropriate computations. That is, given a partition P let Q = P ∪ {c} be a refinement of P. Let
Q1 = Q ∩ [a, b] and Q2 = Q ∩ [c, b]. Then Q1 and Q2 are partitions of [a, c] and [c, b] respectively
and the equality of integrals follows from the fact that f is Riemann integrable on [a, b].
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Theorem 9.22. Let f and g be functions integrable on [a, b]. Then

(1) f + g is integrable on [a, b] and
∫ b
a f + g =

∫ b
a f +

∫ b
a g,

(2) if r ∈ R then
∫ b
a rf = r

∫ b
a f ,

(3) if m ≤ f ≤M (for constants m,M ∈ R) on [a, b] then m(b− a) ≤
∫ b
a ≤M(b− a),

(4) if f ≤ g on [a, b] then
∫ b
a f ≤

∫ b
a g, and

(5) |f | is integrable with
∣∣∣∫ ba f ∣∣∣ ≤ ∫ ba |f |.

Proof. (1) The proof follows from the following facts on each subinterval of any partition:

glb{f(x)|x ∈ [xk−1, xk]}+ glb{g(x)|x ∈ [xk−1, xk]} ≤ glb{f(x) + g(x)|x ∈ [xk−1, xk}

and

lub{f(x) + g(x)|x ∈ [xk−1, xk} ≤ lub{f(x)|x ∈ [xk−1, xk]}+ lub{g(x)|x ∈ [xk−1, xk]}.

These inequalities imply that

L(f,P) + L(g,P) ≤ L(f + g,P) ≤ U(f + g,P) ≤ U(f,P) + U(g,P)

for all partitions P of [a, b]. For every ε > 0 there exists a partition P1 of [a, b] such that

U(f,P1)− L(f,P1) <
ε

2

and similarly there is a partition P2 such that

U(g,P1)− L(g,P1) <
ε

2
,

by Theorem 9.16. Letting P = P1 ∪ P2, we now have a partition of [a, b] such that

U(f + g,P)− L(f + g,P) < ε

and then Theorem 9.16 allows us to conclude that f + g is integrable.

(2) We need to consider three cases here. The simplest is the case r = 0. Then both sides are
equal to 0. Now suppose that r > 0. Let P be any partition of the given interval with mk and Mk,
the bounds on f(x) on [xk−1, xx], determined for that partition. Then

rmk = glb{rf(x)|x ∈ [xk−1, xk]} and rMk = lub{rf(x)|x ∈ [xk−1, xk]}.

Then L(rf,P) = rL(f,P) and U(rf,P) = rU(f,P). Then given ε > 0, if P is a partition such
that

|U(f,P)− L(f,P) <
ε

r

then
|U(rf,P)− L(rf,P)| < ε.

If r < 0 the roles of mk and Mk are reversed and the proof follows.
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(3) Let P be any partition of [a, b]. Consider the constant functions m and M on the interval.
Then

L(m,P) = U(m,P) =

∫ b

a
m = m(b− a)

and

L(M,P) = U(M,P) =

∫ b

a
M = M(b− a).

Since m ≤ f ≤M it follows that

L(m,P) ≤ L(f,P) ≤ L(M,P)

and
U(m,P) ≤ U(f,P) ≤ U(M,P).

Thus

m(b− a) ≤ L(f,P) ≤
∫ b

a
f ≤ U(f,P) ≤M(b− a).

(4) Since f ≤ g it follows that L(f,P) ≤ L(g,P) and U(f,P) ≤ U(g,P) for any partition P .

This forces
∫ b
a f ≤

∫ b
a g.

(5) Let ε > 0 be given and let P be a partition such that U(f,P) − L(f,P) ≤ ε. This holds
because f is assumed integrable. Let mk and Mk be the numbers for f and P, that is, the greatest
lower bounds and least upper bounds over the various subintervals. Then

U(f,P)− L(f,P) =
n∑
k=1

(Mk −mk)∆xk.

We now consider what happens with the function |f |. We will show that the analogous difference
for |f | is less than or equal to that for f . This will require three separate cases.

• Case 1: 0 ≤ mk ≤ Mk. The numbers on each subinterval for |f | are the same as for f
(since every f(x) is greater than or equal to mk and thus greater than or equal to 0), thus
(Mk −mk)∆xk is unchanged for |f |.

• Case 2: mk ≤ Mk ≤ 0. Now Mk and −mk are the greatest lower bound and least upper
bound of the function values of |f | over the subinterval in question. Notice that

−mk − (−Mk) = Mk −mk.

Again the appropriate terms in the difference between the upper and lower sums are un-
changed.

• Case 3: mk ≤ 0 ≤ Mk. Let Zk = max{mk,Mk}. The number Zk is the least upper bound
of the values of |f | over the kth subinterval. Let zk be the greatest lower bound of the values
of |f | over the same subinterval. All we know is that 0 ≤ zk ≤ Zk. Then the difference of the
least upper bound and greatest lower bound over the subinterval for |f | is Zk − zk. It follows
from what we know that

Zk − zk ≤ Zk ≤Mk + |mk| = Mk −mk

since the greatest lower bound of the function values is less than or equal to 0.
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Thus the appropriate term in U(|f |,P)−L(|f |,P) is less than the corresponding term in U(f,P)−
L(f,P) for each k and consequently, we can make U(|f |,P) − L(|f |,P) arbitrarily small. This
shows that |f | is Riemann integrable.

Since we know that for all x in [a, b],

−|f(x)| ≤ f(x) ≤ |f(x)|,

it follows by (4)) that ∫ b

a
−|f | ≤ −

∫ b

a
|f | ≤

∫ b

a
f ≤

∫ b

a
|f |.

Apply the absolute value to the integrals and we have
∣∣∣∫ ba f ∣∣∣ ≤ ∫ ba |f |.

Theorem 9.23. Suppose that f is integrable on [a, c] for every c satisfying a < c < b and bounded
on [a, b]. Then f is integrable on [a, b].

Proof. Let ε > 0 be given and let M satisfy |f(x)| ≤ M for all x ∈ [a, b]. Choose c satisfying
a < c < b such that b − c < ε

4M . Let P1 be a partition of [a, c] such that U(f,P1) − L(f,P1) < ε
2

which is possible by the hypotheses of the theorem. Let Pε = P1 ∪ {b}. Then

U(f,Pε)− L(f,Pε) ≤ U(f,P1) = L(f,P1) + 2M
( ε

4M

)
<
ε

2
+
ε

2
= ε.

This is true because the difference between the least upper bound and greatest lower bound of the
values of f on the rightmost subinterval is less than or equal to 2M .

Up to this point we have used the integral defined by lower sums and upper sums. There is
an equivalent formulation in terms of Riemann sums, sums in which the terms are the products of
function values and lengths of intervals. The precise definition is as follows.

Definition 9.24 (Riemann Sum). Let f be bounded on [a, b] and let P be a partition of [a, b]. A
marking of P is a collection of points taken from the subintervals of P, one for each subinterval.
Let C = {c1, c2, . . . , cn} where ck ∈ [xk−1, xk]. The set C is a marking of P. The Riemann Sum

corresponding to f , P and C is given by R(P, C, f) =
n∑
k=1

f(ck)∆xk.

Example 9.25. Let f(x) = x2 + x on [1, 2] and let P = {1, 1.2, 1.7, 2} be a partition of [1, 2]. Let
C = {1.1, 1.4, 1} be a marking of P. Then

R(P, C, f) =

n∑
k=1

f(ck)∆xk

=
(
(1.1)2 + 1.1

)
(0.2) +

(
(1.4)2 + 1.4

)
(0.5) +

(
(1.1)2 + 1

)
(0.3)

= 2.742

In other words, the Riemann Sum corresponding to P, C, and f equals 2.742.

Theorem 9.26. Let f be Riemann integrable on [a, b]. Let ε > 0 be given and let Pε be a partition

of [a, b] such that U(f,Pε)−L(f,Pε) < ε. Then for every marking C of Pε,
∣∣∣∫ ba f −R(Pε, C, f)

∣∣∣ < ε.

In other words: The Riemann sums closely approximate the integral.
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Proof. Since mk ≤ f(ck) ≤Mk on each subinterval of Pε, it follows that

L(f,Pε) ≤ R(Pε, C, f) ≤ U(f,Pε).

We know from earlier work that L(f,Pε) ≤
∫ b
a f ≤ U(f,Pε). Thus∣∣∣∣∫ b

a
f −R(Pε, C, f)

∣∣∣∣ < U(f,Pε)− L(f,Pε) < ε.

We now come to the Fundamental Theorem of Calculus whose proof uses almost everything we
have developed. The first part of the theorem is essential for computing integrals in calculus while
part 2 is at the heart of the subject of differential equations. The theorem explores the relations
between integration and differentiation. It shows that these are inverse processes.

Theorem 9.27 (The Fundamental Theorem of Calculus).

(1) Suppose that f is integrable on [a, b] and that F is a function on [a, b] that satisfies F ′(x) =

f(x) for all x in [a, b]. Then
∫ b
a f = F (b)− F (a).

(2) Suppose that f is integrable on [a, b] and that F is defined by F (x) =
∫ x
a f for all x in [a, b].

Then F is continuous on [a, b] and if f is continuous at c satisfying a < c < b then F is
differentiable at c and F ′(c) = f(c).

Proof. For (1): Let ε > 0 be given and let Pε be a partition of [a, b] such that U(f,Pε)−L(f,Pε) < ε.
We apply the Mean Value Theorem (Theorem 8.16) to the function F (x) over each subinterval
[xk−1, xk] of Pε. (Why does the Mean Value Theorem apply on each of these intervals?) Thus
there is a ck ∈ (xk−1, xk) such that

f(ck) = F ′(ck) =
F (xk)− F (xk−1)

xk − xk−1
.

We rewrite this as F (xk) − F (xk−1) = f(ck)∆xk. The set C = {c1, c2, . . . , cn} is a marking of Pε
and the Riemann sum

R(Pε, C, f) =
n∑
k=1

f(ck)∆xk =
n∑
k=1

(F (xk)− F (xk−1)) = F (b)− F (a)

since the next-to-the-last term is a telescoping sum. Thus for every ε > 0 there is a marking C

such that
∣∣∣R(Pε, C, f)−

∫ b
a f
∣∣∣ < ε and hence that

∣∣∣F (b)− F (a)−
∫ b
a f
∣∣∣ < ε for every ε > 0. Since

this is true for all positive ε it follows that
∫ b
a f = F (b)− F (a).

For (2): This part is harder to prove. It also has two separate parts. First we prove the
continuity of the function F (x). Let c ∈ [a, b]. For any x ∈ [a, b],

|F (x)− F (c) =

∣∣∣∣∫ x

c
f

∣∣∣∣ ≤M |x− c|
where M is a bound on f , that is |f(x)| ≤ M on [a, b]. Let ε > 0 be given and choose δ = ε

M .
Then if |x− c| < δ = ε

M we have |F (x)− F (c)| ≤M |x− c| < ε. Thus F is continuous at each c.

Now we assume that f is continuous at c and show that F ′(c) = f(c). Consider the following
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quantity: ∣∣∣∣F (x)− F (c)

x− c − f(c)

∣∣∣∣ .
If the limit of this quantity as x approaches c is 0 then we are done.∣∣∣∣F (x)− F (c)

x− c − f(c)

∣∣∣∣ =

∣∣∣∣ 1

x− c

(∫ x

c
f

)
− f(c)

∣∣∣∣
=

∣∣∣∣ 1

x− c

(∫ x

c
f(t) dt

)
− 1

x− c

(∫ x

c
f(c) dt

)∣∣∣∣
=

∣∣∣∣ 1

x− c

∣∣∣∣ ∣∣∣∣∫ x

c
f(t)− f(c) dt

∣∣∣∣
Since we have assumed that f is continuous at c we know that for a given ε > 0 there is a δ > 0
such that if |x− c| < δ then |f(x)− f(c)| < ε.

Going back to our original quantity and assuming that |x− c| < δ we can conclude that∣∣∣∣F (x)− F (c)

x− c − f(c)

∣∣∣∣ =

∣∣∣∣ 1

x− c

∣∣∣∣ ∣∣∣∣∫ x

c
f(t)− f(c) dt

∣∣∣∣
≤
∣∣∣∣ 1

x− c

∣∣∣∣ (ε |x− c|) = ε.

We have used parts (3) and (5) of Theorem 9.22. Thus we have shown that

lim
x→c

∣∣∣∣F (x)− F (c)

x− c − f(c)

∣∣∣∣ = 0

or equivalently F ′(c) = f(c).

Theorem 9.28 (The Mean Value Theorem for Integrals). Let f be continuous on [a, b]. Then

there is a c satisfying a < c < b such that f(c)(b− a) =
∫ b
a f .
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9.1 Exercises

Exercise 9.1. Let f : R → R be defined by f(x) = x2 if x is rational and f(x) = x3 if x is
irrational. Find each of the following.

a) lub{f(x)|x ∈ [0, 0.5]}

b) glb{f(x)|x ∈ [0, 0.5]}

c) lub{f(x)|x ∈ [0.5, 1.5]}

d) glb{f(x)|x ∈ [0.5, 1.5]}

e) lub
{
f(x)|x ∈

[√
2
3 ,
√
2
2

]}
f) glb

{
f(x)|x ∈

[√
2
3 ,
√
2
2

]}
Exercise 9.2. Let f(x) = x2 and P = {0, 0.2, 0.5, 0.7, 1}. Compute L(f, P ) and U(f, P ). Then let
P1 = {0, 0.2, 0.5, 0.6, 0.7, 0.9, 1} be a refinement of P . Compute L(f, P1) and U(f, P1). Compare
the two lower sums and the two upper sums.

Exercise 9.3. Let f(x) = x2 and Pn =
{

0, 1n ,
2
n ,

3
n , . . . , 1

}
. Compute L(f, Pn) and U(f, Pn).

Exercise 9.4. Let P =
{

0, 14 ,
1
2 ,

3
4 , 1
}

and let f be defined by:

f(x) =


0 if 0 ≤ x < 1

4

1 if 1
4 ≤ x ≤ 1

2

2 if 1
2 < x < 3

4

3 if 3
4 ≤ x ≤ 1

.

Find m1, m2, m3, m4, M1, M2, M3, M4, L(f, P ), and U(f, P ).

Exercise 9.5. Prove: If f(x) is Riemann integrable on [a, b] and r is a real number, then rf(x) is

also Riemann integrable on [a, b] and
∫ b
a rf(x) dx = r

∫ b
a f(x) dx.

Exercise 9.6. Let f(x) = 0 if x is rational and f(x) = x if x is irrational with f defined on [0, 1].
What are L(f) and U(f)?

Exercise 9.7. Prove that if f is Riemann integrable on [a, b] and m ≤ f(x) ≤ M for all x in the

interval then m(b− a) ≤
∫ b
a f ≤M(b− a).

Exercise 9.8. Let n be a natural number and let f(x) = x3 on [0, 2] except that f(x) = 0 at all
points of the form k/n where k, n ∈ N and 0 ≤ k ≤ 2n; i.e., f(x) = 0 at all rational numbers with
a denominator of n in [0, 2]. Is f Riemann integrable on [0, 2]? If so, find the integral of f over the
interval.

Exercise 9.9. Let f(x) be a continuous, increasing function on [a, b] with f(a) = 0 and f(b) = M .

Let Pn =
{
a, a+ b−a

n , a+ 2(b−a)
n , . . . , a+ (n−1)(b−a)

n , b
}

be the partition of [a, b] that equally divides

the interval into n equal subintervals. Your problem is to show that U(Pn, f)−L(Pn, f) = M
(
b−a
n

)
.

Try the case of f(x) = 2x2 on [0, 1]. Use n = 4 and find a rectangle somewhere in the diagram
whose area is the desired quantity and relate it to the difference of the upper and lower sum. Then
generalize.
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Exercise 9.10. Let f(x) =

{
0 if x is rational

1 if x is irrational
. Let P be any partition of [0, 1]. Compute

L(f, P ) and U(f, P ). Compute L(f) and U(f). Is f integrable on [0, 1]?

Exercise 9.11. Define f(x) to be 1 for all x except x = 0 where f(0) = 0. Define F (x) =
∫ x
0 f

Clearly f is not continuous at x = 0. Show that F is differentiable at x = 0. Why doesnt this
violate the second part of the Fundamental Theorem of Calculus (Theorem 9.27)?

Exercise 9.12. Let a > 0 be a real number and define f on [−a, 3a] by f(x) = |x|. Explicitly find
c (in terms of a) such that f(c) = 1

4a

∫ 3a
−a f(t) dt.

Exercise 9.13. Let f(x) =

{
1 if 0 ≤ x < 1

2 if x = 1
and let P = {0, x1, x2, . . . , xn−1, 1} be a partition of

[0, 1]. Compute L(f, P ) and U(f, P ). Your answers may contain terms from the partition.

Exercise 9.14. Let f(x) =

{
2x+ 1 if 0 ≤ x ≤ 2

1− 3x2 if 2 < x ≤ 4
and let G(x) =

∫ x
0 f(t) dt for all x in [0, 4].

Find G(x) and determine where it is differentiable.

Exercise 9.15. Suppose that f is a continuous function on [0, 1] such that f(x) ≥ 0 for all x in
[0, 1]. We know that f is integrable on the interval. Show that if f(x) 6= 0 at some x in [0, 1] then∫ 1
0 f > 0.

Exercise 9.16. Let f and g be bounded functions on [a, b]. Further let

mf = glb{f(x) | x ∈ [a, b]}, Mf = lub{f(x) | x ∈ [a, b]},
mg = glb{g(x) | x ∈ [a, b]}, and Mg = lub{g(x) | x ∈ [a, b]}.

Prove that mf +mg ≤ glb{f(x) + g(x) | x ∈ [a, b]} and lub{f(x) + g(x) | x ∈ [a, b]} ≤Mf +Mg.

Exercise 9.17. Let f and g be bounded functions on [a, b]. Let P be any partition of [a, b]. Prove
that L(f, P )+L(g, P ) ≤ L(f+g, P ) and U(f+g, P ) ≤ U(f, P )+U(g, P ). (Hint: Use Exercise 8.17.)

Exercise 9.18. Find an example of a function f which is Riemann integrable on [0, 1] but does
not satisfy the Mean Value Theorem for Integrals (Theorem 9.28). Explicitly show that it does not
satisfy the theorem.

Exercise 9.19. Let f(x) = x3 + 2x on [1, 4]. Let ε = 0.05. Find a partition Pε such that
U(f, Pε)− L(f, Pε) < ε.

Exercise 9.20. Let f(x) = x3 on [1, 4]. Let P = {1, 2, 3, 4} be a partition of [1, 4] and let C be
the marking defined by applying the Mean Value Theorem (Theorem 8.16) to f over each of the
subintervals of the partition. Show that F (P,C, f ′) =

∫ 4
1 f
′(x) dx.



Chapter 10

What comes next in Real Analysis?

In this book we have started with an intuitive notion of the Real Numbers, a set of numbers used
in Calculus, and have made that notion more precise. We have introduced convergence, continuity,
differentiability, and integrability, concepts fundamental to Calculus and put them on a firmer
foundation. Certainly Real Analysis does not end with chapter 9 of this book but is a thriving
part of modern mathematics moving forward in many different directions. Here are some of those
directions. This is not even close to an exhaustive view, but it does contains many of the areas
that a second course in Real Analysis might study.

Defining the Real Numbers

We started with an intuitive view of the Real Numbers and declared that the Real Numbers is, as a
set, a complete ordered field containing the Rational Numbers. The Completeness Axiom (Axiom 6)
is an assumption about the Reals that allows us to fill up all the spaces between ratioanl numbers
to create the reals. Again, it is an assumption, an axiom. In the mid 1800s two mathematiciains,
Richard Dedekind (1831 1916) and Georg Cantor (1845 1918), defined the Real Numbers assuming
the Rational Numbers exist and have their familiar axiomatic structure. Their definitions were quite
different but resulted in the same set of Reals.

Dedekind defined the Reals via what he called cuts, pairs of sets of rational numbers. A cut is
a partition of the rationals into two non-empty sets, A and B, such that their intersection is empty
and their union is the set of rationals. Further every element of A is less than every element of B.
Finally A does not have a largest element. Then Dedekind defines the four arithmetic operations
on the set of all cuts and shows that this set is an ordered field. The Completeness Axiom then
comes free of charge and Dedekind has defined the Real Numbers. This construction of the Reals
from the Rationals is neither quick nor easy and it does not eliminate all mysteries from the Reals.

Cantor defined the Reals in terms of Cauchy sequences of rational numbers. One can define
Cauchy sequences on the rationals simply by asking that the epsilon in the definition be a positive
rational number. He then defines an equivalence relation on the set of all such Cauchy sequences.
One way to look at this is to say that two Cauchy sequences are equivalent if the sequence that
is created by interleaving the two given sequences is also Cauchy. He then, like Dedekind, proves
that the set of all equivalence classes is what we think of as the Real numbers.

93
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Uniform Convergence

In his textbook on Real Analysis, Augustin-Louis Cauchy (1789 1857) claimed to prove that
the limit of a sequence of continuous functions is a continuous function. However, there is a
very simple counter-example. For each natural number n, let fn : [0, 1] → [0, 1] be defined by
fn(x) = xn. Clearly each of these functions is continuous on [0, 1]. However, if we fix an x and take
the limit as n tends to infinity of {fn(x)} and call that limit f(x), we have constructed a function

discontinuous on [0, 1]. Namely f(x) = limn→∞ fn(x) = limn→∞ xn =

{
0 0 ≤ x > 1

1 x = 1
. This follows

from Theorem 5.14.(2). This is a somewhat disturbing situation. Once this phenomenon was
discovered many other examples of it came to light and they showed that intuitive handling of
infinite series and power series might lead to errors. Karl Weierstrass (1815 1897) defined the
notion of Uniform Convergence of a sequence of functions and opened up the study of sequences and
series of functions to deeper research. The kinds of problems that uniform convergence addressed
were problems of the preservation of properties under convergence. For example if {fn(x)} is a
sequence of functions on a common domain of A and the sequence has a point-wise limit of f(x)
on A, then does the limit process maintain continuity, differentiability, or Integrability?

Fourier Series

The concept of uniform convergence was very helpful in the study of what are called Fourier Series.
Joseph Fourier (1768 1830) was a French engineer, and mathematician. He solved a version of what
is known as the Heat Equation, a partial differential equation whose solution displays a steady-
state temperature distribution on a surface. He solved the equation in a manner unique at the
time, namely by using infinite series of trigonometric functions. He essentially replaced an(x− c)n
in a traditional power series with terms like an sin(nx) + bn cos(nx). Using these series he could
solve the partial differential equation at hand but his methods were met with deep skepticism
(on convergence grounds). Today Fourier Series and later highly abstract generalizations of them
(wavelets, etc.) are used to solve problems in the study and application of light and sound.

Lebesgue Integration

Bernhard Riemann (1826 1866) successfully gave an abstract definition of Integrability, indeed the
definition presented in this text. Due to his work it is known as Riemann Integrability. However,
as Riemann saw, there are functions which are not Riemann Integrable. We have looked at the
example of the Dirichlet function on [0, 1] which is 1 on the irrationals and 0 on the rationals.
The problem with this function is that it has so many discontinuities. With the developing study
of infinite sets, a new approach to integration was imagined by Henri Lebesgue (1875 1941) and
others. In this form of integration the Dirichlet function above is Integrable (Lebesgue Integrable)
and has integral equal to 1. The Lebesgue integral agrees with the Riemann Integral for all functions
where both exist but there are many functions which are Lebesgue Integrable but not Riemann
Integrable. The real power of the Lebesgue version is that it avoids many of the problems uniform
convergence was intended to address and gives a clearer path to the integrals of a limit of a sequence
of Lebesgue Integrable functions.

One way to to see the difference between Riemann Integration and Lebesgue Integration is to
note that the sets over which the Riemann Integral is defined are closed intervals, [a, b], while for
the Lebesgue Integral the basic sets are called measurable (or Lebesgue measurable) sets. In [0, 1]
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the subsets of the rationals and the irrationals are both measureable sets, the rationals having
measure 0 while the irrationals have measure 1. Measure is essentially the length or more precisely
the one-dimensional volume of a set.
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Chapter 11

Supplemental Exercises

Exercise 11.1. The sequence of Fibonacci Numbers, {Fn | n = 1, 2, 3, . . . } is defined by F1 = F2 =
1, Fn+2 = Fn+1 + Fn for all n ≥ 1. Prove that F3n is an even number for every natural number n.

Exercise 11.2. Find the rational number, p
q , with q ≤ 10, that is closest to

√
2.

Exercise 11.3. Suppose that a set A has 5 elements and a set B has 6 elements. Further suppose
that their union has 8 elements. How many elements are there in the set A×B?

Exercise 11.4. Let f : R→ R be defined by f(x) = 1− x
√

2. Find each of the following sets.

a) f((−1, 1))

b) f((
√

2,
√

3))

c) f−1((0, 1))

d) f((−1,
√

5))

Exercise 11.5. Let f : A→ B be a function. Prove or disprove:

a) If U ⊂ A and V ⊂ A then f(U ∩ V ) = f(U) ∩ f(V ).

b) If U ⊂ B and V ⊂ B then f−1(U ∪ V ) = f−1(U) ∪ f−1(V ).

Exercise 11.6. Let E = {2, 4, 6, 8, 10, . . . } and let 3Z = {. . . ,−9,−6,−3, 0, 3, 6, 9, . . . }. Find an
explicit bijection, f , from 3Z to E, that is a one-to-one and onto function f : 3Z→ E. Finding an
explicit bijection means actually finding a formula for such an f and then proving that it is indeed
a bijection.

Exercise 11.7. Let A = (−3, 1). Prove that −3 = glb(A).

Exercise 11.8. Let X be a set of real numbers and assume that u is both an element of X and
an upper bound of X. Prove that u = lubX.

Exercise 11.9. Let a, b be distinct irrational numbers with a < b. Prove that there is an irrational
number c satisfying a < c < b.

Exercise 11.10. In the Nested Intervals Theorem (Theorem 3.11) all intervals are closed intervals.
Find an example of a nested sequence of non-empty open intervals such that their intersection is
the empty set.
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Exercise 11.11. Let the sequence {an} be defined by a1 = 0, an+1 = an
3 − 2 for all n ∈ N.

Prove that this sequence is bounded below. (Hint: First find a possible lower bound and then use
induction.)

Exercise 11.12. Prove that limn→∞ 1
n2+1

= 0.

Exercise 11.13. Suppose that r is a real number and limn→∞ an = L. Prove that limn→∞ ran =
rL.

Exercise 11.14. Prove that limn→∞
(

1 + (−1)n
n

)
= 1.

Exercise 11.15. Suppose that limn→∞ an = L and limn→∞ bn = M . Prove that limn→∞(an−bn) =
L−M .

Exercise 11.16. Let a1 = 1, an+1 =
(
2
3

)
an + 7. Prove that {an} converges and find the limit of

the sequence.

Exercise 11.17. Find an example of each of the following (if possible).

a) A bounded sequence that is divergent.

b) A convergent sequence that is not bounded.

c) An increasing sequence that is divergent.

d) A convergent sequence that is neither increasing nor decreasing.

e) An increasing sequence that is bounded below and divergent.

Exercise 11.18. For each of the following, find an example of a pair of sequences satisfying the
stated conditions (if possible).

a) Sequences {an} and {bn} are both divergent but {an + bn} converges.

b) Sequences {an} and {bn} are both divergent but {anbn} converges.

c) Sequences such that {an} converges, {bn} diverges and {anbn} converges.

d) Sequences such that {an} converges, {bn} diverges and {anbn} diverges.

Exercise 11.19. Give an example (if one exists) of:

a) a Cauchy sequence of rational numbers that converges to an irrational number, and

b) a Cauchy sequence of rational numbers that does not converge.

Exercise 11.20. Show that for all x in the set {x ∈ R | |x| < a}, the sum
∞∑
k=0

xk > 0.

Exercise 11.21. Let r be a real number and let
∞∑
k=1

ak = A. Prove that
∞∑
k=1

rak = rA.

Exercise 11.22. Either find two real numbers, x and y, such that
∞∑
k=0

xk and
∞∑
k=0

yk both converge

and satisfy

( ∞∑
k=0

xk
)( ∞∑

k=0

yk
)

=
∞∑
k=0

xkyk or explain why this is not possible.
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Exercise 11.23. Which of the following series converge? If the series converges, find its sum.

a)
∞∑
k=0

(−3
8

)k
b)

∞∑
k=0

(−8
3

)k
c)

∞∑
k=0

(
1
3

)k
d)

∞∑
k=0

2k

3k+1

e)
∞∑
k=0

1
nk where n is a natural number greater than 1

Exercise 11.24. Let
∞∑
k=1

ak and
∞∑
k=1

bk be infinite series with
∞∑
k=1

ak convergent. Suppose that {sn}
is the sequence of nth partial sums of {an} and {tn} is the sequence of nth partial sums of {bn}.
Finally assume that for each n, tn = sn + 1

n . Determine whether
∞∑
k=1

bk converges or diverges and

justify your answer.

Exercise 11.25. Let sn = n+1
2n−1 be the nth partial sum of the sequence {an}. Find a100 and

∞∑
k=1

ak.

Exercise 11.26. a) Prove that (−∞,−2) is an open set.

b) Prove that [−3, 4] is a closed set.

Exercise 11.27. Prove that if A is a set that has a limit point then A is an infinite set.

Exercise 11.28. Prove that −2 is a limit point of (−4,−2) using the theorem on sequences and
limit points (Theorem 6.17).

Exercise 11.29. Prove from the definition that {1} is a compact set.

Exercise 11.30. Prove that limx→2 1− 2x = −3.

Exercise 11.31. Prove that limx→−2 2x2 − 1 = 7.

Exercise 11.32. Let f(x) = 1
x with domain (−∞, 0) ∪ (0,∞). Show that limx→0 f(x) does not

exist. (Hint: Consider the sequence {xn} =
{

1
n

}
and assume that limx→0 f(x) = L for some real

number L.)

Exercise 11.33. Let f : A→ R, c be a limit point of A, and limx→c f(x) = 1. Prove that there is
an ε > 0 such that f(x) > 0 for all x 6= c, x ∈ Nε(c) ∩A.

Exercise 11.34. Let K be a non-empty compact set of real numbers. Prove that lubK and glbK
both exist and are in K.

Exercise 11.35. Let A =
{

1, 12 ,
1
3 ,

1
4 , . . . , 0

}
and let f : A → R be defined by f(x) = 1

x . At what
points is f continuous?
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Exercise 11.36. Let f : (−4,−1)→ R be defined by f(x) = 1
(x+1)2

. Show that f is not uniformly

continuous on (−4,−1).

Exercise 11.37. Let f : [0,∞) → R be defined by f(x) =
√
x. Show that f is not uniformly

continuous on (−4,−1).

Exercise 11.38. Using the limit definition of the derivative at a point x = c, namely f ′(c) =

limx→c
f(x)−f(c)

x−c , find the derivative of f(x) =
√

2x at c = 8.

Exercise 11.39. Given a function f(x), define F (x) = limh→0
f(x+h)−f(x−h)

2h .

a) Show that if f(x) = x2 then F (x) = f ′(x).

b) Compute F (0) if f(x) = |x|. Does F (x) = f ′(x) in this case?

Exercise 11.40. Let f(x) = x2 and c = 1. Note that f ′(c) = 2 > 0. Find a δ > 0 such that
f(c− h) < f(c) < f(c+ h) for all 0 < h < δ.

Exercise 11.41. Let f : R → R be defined by f(x) =

{
1 if x is rational

0 if x is irrational
. Let c be any real

number. Show that limx→c f(x) does not exist.

Exercise 11.42. Let f : R → R be defined by f(x) =

{
x if x is rational

0 if x is irrational
. Show that

limx→0 f(x) exists and equals f(0), hence that f is continuous at x = 0. Show that limx→c f(x)
does not exist for any other value of x.

Exercise 11.43. Verify the Mean Value Theorem for f(x) =
√
x over the interval [1, 9].

Exercise 11.44. Let f : R→ R be defined by f(x) =

{
x3 x < 0

−x2 0 ≤ x
.

a) Is f continuous at x = 0? Why?

b) Is f differentiable at x = 0? What is f ′(0)?

c) Verify the Mean Value Theorem for f(x) over [−2, 1].

Exercise 11.45. Prove that limx→0 cos
(
1
x

)
does not exist.

Exercise 11.46. Let f(x) = x2 + 3x on [0, 4] and let d be between 0 and 28, that is 0 = f(0) <
d < 28 = f(4). Find c in (0, 4) such that f(c) = d. Note this does not mean pick a particular value
for d, but solve the problem for an arbitrary d.

Exercise 11.47. Prove that {1, 2} is disconnected.

Exercise 11.48. Let f be defined on [0, 2] by the following formula:

f(x) =

{
x if x is irrational√

3 if x is rational
.

Let P be the partition {0, 1,
√

2, 2}. Compute L(P, f) and U(P, f).

Exercise 11.49. Find a partition, Pε, on [0, 2] such that U(Pε, x
2 + x)−L(Pε, x

2 + x) < ε = 0.02.

Exercise 11.50. Let f : [0, 1]→ R be defined by f(x) =

{
1 if 0 ≤ x < 1

2 if x = 1
and let P = {0, x1, x2, . . . , xn−1, 1}

be a given partition of [0, 1]. Compute U(P, f)− L(P, f).
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