The Effects of a Mother's Vegan Diet on Fetal Development

Marc Choi
SUNY Geneseo

Marlea Jones
SUNY Geneseo

Sara McKiernan
SUNY Geneseo

Megan Smetana
SUNY Geneseo

Follow this and additional works at: https://knightscholar.geneseo.edu/sustainability-curriculum-student

Creative Commons License
This work is licensed under a Creative Commons Attribution-No Derivative Works 4.0 License.

Recommended Citation
Choi, Marc; Jones, Marlea; McKiernan, Sara; and Smetana, Megan, "The Effects of a Mother's Vegan Diet on Fetal Development" (2019). Student Work. 61.
https://knightscholar.geneseo.edu/sustainability-curriculum-student/61

This Open Educational Resource is brought to you for free and open access by the Sustainability Curriculum at KnightScholar. It has been accepted for inclusion in Student Work by an authorized administrator of KnightScholar. For more information, please contact KnightScholar@geneseo.edu.
The Effects of a Mother's Vegan Diet on Fetal Development

Vegan Diet Effects on the Environment

- Meat and Dairy consumption play key roles in food-related environmental impact
- Environmental burdens include agricultural land degradation, uncontrolled waste management, groundwater contamination, and greenhouse gas emissions due to livestock digestion

Fatty Acids and Development

- Docosahexaenoic acid and arachidonic acid are long-chain polyunsaturated fatty acids (LC-PUFAs) that are transferred across the placenta and found in the brain/other organs during fetal development
- Low levels of docosahexaenoic acid from the retina and the brain could result in reduced visual function and learning deficits
- LC-PUFAs are central nutrients required for structural lipids and are fundamental to fetal and postnatal development and normal cell function
- The consumption of LC-PUFAs plays a beneficial physiologic and metabolic role in the health of offspring, protecting them from the onset of metabolic disease
- A vegan diet is deficient in many essential vitamins and minerals

How to Supplement a Vegan Diet

- Supplementation of calcium, magnesium, and vitamin B12 may reduce the risk of decreased birth weight and severity of pre eclampsia
- Folate supplementation decreases risk of neural tube defects

How to be Sustainable

- Be more conscious about the decisions you are making, especially when grocery shipping


Supplementation of calcium, magnesium, and vitamin B12 may reduce the risk of decreased birth weight and severity of pre eclampsia

Folate supplementation decreases risk of neural tube defects