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Abstract

Reverse transcription quantitative polymerase chain reac-

tion (RT-qPCR) is widely used in diagnosis and research to

determine specific mRNA expressions in cells. As RT-qPCR

applications increase, it’s necessary to provide undergradu-

ates hands-on experience of this modern technique. Here,

we report a 3-week laboratory exercise using RT-qPCR to

demonstrate the light-dependent expressions of AtRBCS1A

and AtRBCS3B genes encoding two Arabidopsis thaliana

small subunits of the ribulose 1,5-bisphosphate carboxyl-

ase/oxygenase (Rubisco). In the first week, students puri-

fied and quantified total RNA from leaves of A. thaliana

pretreated in the dark for 96 hr and untreated controls. In

the second week, RNA samples were separated by formal-

dehyde gel electrophoresis and used for RT-qPCR. Stu-

dents calculated expressions of the two genes in dark

treated leaves as percentages of those of the controls by

using the 22DDC
T method and the collected CTs. In the third

week, class CTs, melting curves, students’ calculations, and

factors affecting the reliability of RT-qPCR results were

summarized and discussed. Students’ results show that (i)

relatively pure and intact RNA samples are obtained; (ii)

ACTIN2 is a better reference gene than the 18S rRNA; (iii)

the dark treatment reduces both gene expressions to < 1%;

(iv) the reduction in the expression of AtRBCS3B is signifi-

cantly more than that of the AtRBCS1A. Results from pre-

and post-lab tests indicate that besides the theory, this

exercise helps students learn the applications and associ-

ated techniques of RT-qPCR. Future modifications and new

experiments that can be developed based on students’

learning outcomes and assessment are also discussed.

VC 2016 by The International Union of Biochemistry and

Molecular Biology, 00:000–000, 2016.

Keywords: RT-qPCR; gene expression; cDNA; ribulose 1,5-

bisphosphate carboxylase/oxygenase (Rubisco) small subunits

Introduction
Plants convert carbon dioxide and water to oxygen and carbo-
hydrates via photosynthesis. The light reaction of photosyn-
thesis converts light to chemical energy in the forms of
NADPH and ATP to fix the carbon from CO2. The fixed carbon
is reduced to carbohydrates by a process called the “Calvin
cycle” or “dark reaction” which requires the enzyme,

ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco),
to catalyze the carboxylation of ribulose-1,5-bisphosphate
(RuBP) [1]. The most common form of Rubisco, found in
higher plants and green algae, consists of eight “large” subu-
nits (RBCL) encoded by a single rbcL gene and eight “small”
subunits (RBCS) encoded by an rbcS multigene family. The
numbers of expressing members and transcript abundance in
the rbcS multigene family have been studied in different tis-
sues, under different environments, and during tissue devel-
opment [2–4]. Both transcription and stability of individual
rbcS mRNAs are altered in different organs and regulated by
the developmental program within these organs as well as by
exposure to light [3, 4]. Coruzzi et al. have shown that com-
pared with green leaves, the level of rbcS mRNAs is reduced
to 1-3% in etiolated pea leaves [4]. Also, the pea pPS-2.4
mRNA accounts for �30 2 35% of total rbcS transcripts in
green leaves but is below detection in etiolated leaves.

In Arabidopsis thaliana, the small subunits of Rubisco are
encoded by four genes, which are divided into subfamilies A
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and B [5]. The genes in the B subfamily consist of 1B, 2B, and
3B, while the A subfamily consists of 1A. These genes are dif-
ferentially regulated by light of different qualities [6]. Unlike
AtRBCS3B, AtRBCS1A seems to be insensitive to blue light
pulses. However, both AtRBCS1A and AtRBCS3B play an
important role in controlling photosynthesis. Using reverse
transcription quantitative PCR (RT-qPCR), Izumi et al. demon-
strated that both mRNAs contribute to the accumulation of
Rubisco in Arabidopsis leaves, and they work additively to
produce enough Rubisco for photosynthesis [7].

Quantitative real time polymerase chain reaction
(qPCR) is known for its high sensitivity, real time detection
of reaction progress, speedy analysis, and precise measure-
ment of the target in the sample [8]. Reverse transcription
(RT) of RNA followed by qPCR (so-called RT-qPCR) has
become a powerful tool for studying gene expression in
cells. Three major steps in RT-qPCR are: (i) the reverse
transcriptase-dependent conversion of mRNA into cDNA,
(ii) the amplification of the cDNA by qPCR, and (iii) the
detection and quantification of amplified products in real
time [9]. With the growing number of RT-qPCR applica-
tions, it is important to introduce this modern technique to
undergraduates. Published laboratory exercises are avail-
able for introducing RT-qPCR to undergraduates. Recently,
one employed RT-qPCR to analyze four target sequences
during the DMSO- differential expression induced differen-
tiation of cultured erythrocytes [10]. Another showed the
vernalization-induced reduction of FLOWERING LOCUS C
gene expression in Arabidopsis thaliana [11]. However, like
other qPCR lab exercises, both papers focused on the
theory and experimental results but not factors affecting the
interpretation/reliability of RT-qPCR data, such as the choice
of an appropriate reference gene. For example, if the chosen
reference gene shows a large fluctuation in expression, nor-
malization will lead to inappropriate or faulty biological data
interpretation. Furthermore, there are no universal refer-
ence genes available. It was shown that the widely used ref-
erence genes, ACT and GAPDH, are not the most suitable ref-
erence genes for RT-qPCR experiments in banana [12].

Therefore, we designed an undergraduate lab exercise
to study the effect of 96 hr dark treatment on mRNA expres-
sions of AtRBCS1A and AtRBCS3B encoding the small subu-
nits of ribulose 1,5-bisphosphate carboxylase/oxygenase
(Rubisco) in A. thaliana. The 3-week lab exercise includes
RNA isolation and quantification which were done during
the first week, followed by formaldehyde gel electrophoresis
of the RNA samples and RT-qPCR in the second week. In
the third week, the results and factors affecting the reliabil-
ity of RT-qPCR experiments were summarized and dis-
cussed in class. In addition to addressing the theory of
RT-qPCR and demonstrating the 96-hr-dark-induced reduc-
tion of both gene expressions in A. thaliana leaves, this lab
exercise focused on several important factors for the valida-
tion of RT-qPCR results, which include: (i) good RNA purity
and quality based on O.D. ratios obtained from spectropho-

tometer and the results of formaldehyde agarose gel electro-
phoresis, (ii) proper controls, (iii) a reliable reference base
by comparing results obtained from two reference genes,
ACTIN2 and 18S rRNA, and (iv) high qPCR efficiency by test-
ing the % amplification efficiency of each gene.

Learning Outcomes
After completing the exercise, students should be able to (i)
explain RT-qPCR to others and the theory behind it; (ii)
carry out total RNA isolation, reverse transcription, and
qPCR following the step-by-step protocols provided; (iii) use
the 22DDC

T method and collected CTs to calculate expres-
sions of target genes; (iv) understand and interpret data
obtained from the lab exercise and convert them into tables
and figures for writing up a report in the format of a peer-
reviewed journal; (v) understand and/or critique scientific
research papers on RT-qPCR/qPCR experiments; (vi) set up
a similar gene expression study using RT-qPCR with appro-
priate controls and reference genes.

Materials and Methods
Plant Materials
Arabidopsis (Arabidopsis thaliana, accession Col-O) seeds
were grown following the protocol provided by the Arabi-
dopsis Biological Resource Center [13]. Briefly, seeds were
sown at a rate of 16 2 20 seeds per pot in 10 cm square
pots containing mounded potting soil (Miracle-Gro Potting
Mix) covered with sterile plastic screening. After sowing,
pots were put in covered flats which were then placed in a
Conviron E15 growth chamber (Winnepeg, Canada) at
238C, 60% relative humidity, and 120 mmol/m2sec light with
a long-day photoperiod (14 hr light, 10 hr dark) for �6
weeks before tissue preparation. Where necessary, the
plants were thinned to 3 or 4 per-pot to encourage larger
plant size. When plants were 6-week-old, half of them
were covered with cardboard lined with double-layered
plastic sheets made from 55 gallon black trash bags for 96
hr as the dark treatment. The rest were left under the
same photoperiod as the control. Approximately 100 mg
leaf tissue was harvested and placed in a 1.5 ml microcen-
trifuge tube which was quickly frozen in liquid N2 and then
stored at 2708C until ready for RNA isolation.

Week One
Total RNA Isolation and Quantification
Students worked in pairs in the lab. For each lab period, a
30 2 40 min prelab lecture/discussion was given followed
by a 3 hr hands-on exercise. At the beginning of Week One,
the prelab lecture and discussion focused on specific pre-
cautions for working with RNA, such as wearing gloves, the
use of RNase free water and RNase inhibitors, etc. Micro-
fuge tubes containing leaf tissue were then retrieved from
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the 2708C freezer and immediately placed in liquid N2.
Each student group obtained a tube of leaf tissue. A plastic
pestle was used to grind the leaf tissue quickly and thor-
oughly. Half of the student groups isolated RNA from the
control and the other half from the 96 hr dark treatment.
The Qiagen RNAeasy Plant Mini Kit (Qiagen Inc., Valencia,
CA) was used for RNA isolation by following the “Total RNA
Isolation with In-column DNase Treatment” protocol
described in the “RNeasy Mini Handbook” provided by the
manufacturer. RNA purity and quantity were assessed
using a NanoDrop 100 spectrophotometer (Thermo Scien-
tific, Wilmington, DE). The samples were then stored at
2708C until the following week.

Week Two
Formaldehyde Gel Electrophoresis and First Strand
cDNA Synthesis
To evaluate the integrity of RNA samples, a 1.2% formalde-
hyde agarose gel containing GelRed (Phenix Research Prod-
ucts, Candler, NC) was made and gel electrophoresis was
carried out by following the procedure described in Qiagen
RNeasy Mini Handbook. Due to the time constraint, stu-
dents set up the reverse transcription (RT) reactions fol-
lowed by qPCR while waiting for the results of gel electro-
phoresis. For the first strand cDNA synthesis, each group
used its own RNA sample obtained from Week One and
carried out the RT reaction by using the Verso cDNA Syn-
thesis Kit (Thermo Scientific, Wilmington, DE) and follow-
ing the protocol described by the manufacturer. Briefly, a
20 lL aliquot of diluted RNA sample (20 ng/lL) was made.
To a 0.5 mL thin wall PCR tube, 11 mL of 20 ng/lL RNA and
1 mL of Primer mix (blend of random hexamers and the
anchored oligo-dT [3 : 1] provided in the kit) were added.
The tube was heated to 708C for 5 min and then cooled
quickly on ice for 1 min before mixing with the rest of the
reaction mix containing 4 mL of 5x cDNA buffer, 2 mL of
dNTP mix, 1 mL of RT enhancer, and 1 mL of Verso enzyme
mix. “No RT” controls containing everything except the
reverse transcriptase were also prepared for both the dark
treatment and the control. All tubes were then placed in a
MJ Research PTC-100 thermal cycler (MJ Research, Inc. of
Waltham, MA) at 428C for 60 min, and then at 958C for 2
min to inactivate the enzyme. Finally, 180 lL of sterile
water was added to obtain an RNA concentration of 1.1 ng/
lL in each reaction tube.

Quantitative PCR
For qPCR, we used GoTaqVR qPCR Master Mix (Promega US.
Madison, WI). Each group set up eight qPCR reactions with
Arabidopsis ACTIN2 and 18S rRNA as two reference genes,
and AtRBCS1A and AtRBCS3B as the target genes. Since
only a single RNA isolation was performed per group, the
“control” groups shared their cDNAs with the “treatment”
groups and vice versa. The primer pairs and sizes of the

corresponding qPCR products are shown in Supporting
Information Table S1. A strip of eight 0.2 mL qPCR tubes
(BioRad, Hercules, CA) was provided to each group. To
each tube, 10 mL of 2x Master Mix, 4 mL of H20, 4 mL of
diluted reverse transcription reaction as described above,
and 2 mL of Primer Mix (5 pmole each of Forward and
Reverse primers for each gene) were added. The first four
tubes were set as follows: cDNA from the untreated control
with forward and reverse primers corresponding to
“ACTIN2,” “18S rRNA,” “AtRBCS1A,” and “AtRBCS3B,”
respectively. The same order of primers was used with
cDNA from 96-hr dark treatment for the remaining four
tubes. Students were reminded to change filter tips for
each pipetting. Since qPCR tubes can’t be labeled, it is
important to remind students to keep everything in the cor-
rect order. The tubes were then placed in a Stratagene
Mx3000P qPCR System (Agilent Technologies, Santa Clara,
CA) or a BioRad CFX Connect

TM

Real-time PCR Detection
System (BioRad USA, Hercules, CA). The PCR cycles were
958C for 2.5 min, then 40 cycles of 958C for 20 sec, 508C for
30 sec, and 728C for 30 sec and a final cycle of rapid heat-
ing to 958C to denature the DNA followed by cooling to
558C for the melting curve.

Calculations
Based on the collected threshold cycle (CT, the number of
cycles required for the fluorescent signal to cross the
threshold or exceed background level) from the qPCR
experiment and the 2–DDC

T equation [14] shown below, stu-
dents calculated AtRBCS1A and AtRBCS3B mRNA expres-
sions in leaves of the 96 hr dark-treated plants presented
as percentages of those of the controls.

Gene Expression (as % mRNA expression of the control5
22DDC

T 3 100)

� CT GOI (control) – CT REF (control) 5 D CT (control)

� CT GOI (dark) – CT REF (dark) 5 D CT (dark)

� DCT (dark) – D CT (control)5 D D CT

GOI: gene of interest (AtRBCS1A or AtRBCS3B)
REF: reference gene (ACTIN2 or 18S rRNA)
dark: leaves from plants with 96 hr dark treatment
control: leaves from plants without dark treatment

Hazards
The protocol used in this lab exercise was reviewed and
approved by SUNY Geneseo’s Institutional Review Board
(IRB) and is considered exempt under 45 CFR 46 subpart
A, §46.101(b)(1) because it involves research conducted in
established or commonly accepted educational settings,
involving normal educational practices. Students were
required to wear lab coat and closed-toed shoes in lab. Dis-
posable gloves were provided for each student. The liquid
N2 used to freeze leaf tissue needs to be handled with care.
For RNA isolation, the Qiagen RNAeasy Plant Mini Kit

Chang et al. 3



contain Buffer RLC made of guanidine thiocyanate, Buffer
RLT made of guanidine hydrochloride, and Buffer RW1
made of a small amount of guanidine thiocyanate. Guani-
dine can form a highly active compound when combined
with bleach. Thus, all three buffers and materials in con-
tact with them need to be handled carefully. Beta-
mercaptoethanol used in RNA extraction is mutagenic and
a potential neurotoxin, and should be used in the fume
hood. The formaldehyde used for RNA gel electrophoresis
can be irritating to the skin, eyes, and respiratory tract and
should also be used in the fume hood. SYBR Green I is not
known to be mutagenic, but is a DNA intercalating agent
and should be used with caution. All these chemicals need
to be treated as hazardous waste for special disposal.

Results and Discussion
In this paper, we report the results from three semesters’
RT-qPCR exercises performed in Molecular Techniques
(Biol 390), a one semester, 2 credit hour lab course
required for biochemistry majors. The lab is designed for
biochemistry and biology juniors/seniors. All students had
previously taken genetics, cell biology, and/or biochemistry
and were familiar with DNA, RNA, and protein structures
and functions. Most if not all students also take/took the
other junior/senior course, Molecular Biology (Biol 322),
which does not have a lab component. As such, the molec-
ular techniques course introduces students to basic techni-
ques of DNA, RNA, and protein manipulations commonly
used in molecular biology, as well as the use of associated
apparatuses. Exercises for DNA and protein manipulations
include protein and DNA isolations and quantifications,
PCR, agarose gel electrophoresis, DNA cloning and bacte-
rial transformation, restriction digest, web-based sequence
analysis, SDS polyacrylamide gel electrophoresis, Western
blot, and Immunodetection. The three weeks’ RT-qPCR lab
exercise corresponds to the part of RNA manipulation.

At the beginning of each lab period, the instructor
spent 30 2 40 min going through the background informa-
tion and protocols, and/or discussing results obtained from
the previous week(s). In the first week, students isolated
total RNA from leaves of Arabidopsis thaliana. As shown in
Table 1, relatively pure RNA samples were obtained
because both A260/A280 and A260/A230 ratios were�2.
An A260/A280 of 2.0 and an A260/A230 of 2.0 2 2.2 indi-
cate a pure RNA sample [15]. However, the average A260/
A230 was 2.34 (> 2.2), suggesting the presence of trace
guanidine isothiocyanate used for RNA isolation, which
absorbs at �260 nm [15]. There was no significant differ-
ence in RNA purity and yield obtained between leaves of 96
hr-dark treated plants and those of the controls (data not
shown). In the second week, formaldehyde agarose gel
electrophoresis was performed to evaluate the integrity of
RNA samples. Multiple rRNA bands were observed for each
RNA sample, suggesting that they were relatively intact
and of good quality without smearing (Fig. 1).

In the third week, the CTs derived from the amplifica-
tion curve, necessary controls for the RT-qPCR assay, and
melting curves collected were summarized and discussed
in class. Based on the collected CTs, ACTIN2 is a better ref-
erence gene due to having a similar amplification magni-
tude as those of the two target genes and smaller varia-
tions in CTs of both the control and treatment (Table 2).
Also, for the “No RT” controls, the CTs for all genes except
18S rRNA (CT 5�27) were �37 (data not shown). An in-
class discussion focused on if the presence of CTs for the
“No RT” controls resulted from our inability to completely
remove trace genomic DNA in the RNA samples, which
escaped DNase treatment during RNA purification. It might
also be the cause for the much lower CT observed for 18S
rRNA (Table 2), a multicopy gene. Additional information
on why 18S rRNA was not a suitable reference gene for
studying mRNA expressions [16] as well as the significance

GelRed stained 1.2% formaldehyde agarose gel

showing different rRNA bands in RNA samples

from one of lab sections. Fifteen of the 50 lL

total RNA obtained by each group was loaded

into each well. The number on the top indicates

the amount of total RNA loaded. The remainders

of the RNA samples were then used for RT-qPCR.

Averagea purity and yield of RNA isolated from

A. thaliana leaf

260/280b 2.09 6 0.03

260/230c 2.34 6 0.05

Yield (mg/100 mg leaf tissue) 10.75 6 3.99

aAverage from twelve RNA isolations, six each for the 96-hr dark

treatment and the control.
bAbsorbance ratio of nucleic acid to protein. A ratio of � 2.0 indicates

a pure RNA (14).
cAbsorbance ratio of nucleic acid to carbohydrate, EDTA, and phenol.

A ratio of � 2.0 - 2.2 indicates a pure RNA (14).

FIG 1

TABLE 1
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and qualifications of a good reference gene were also dis-
cussed. A brand new unopened qPCR kit was used for the
qPCR experiment. Thus, students did not set up the “No
template” controls (No TC), but its importance was men-
tioned. The single peak in the melting curve is often used to
confirm the presence of a single qPCR product amplified by a
specific set of primers. Students’ results show only one qPCR
product being amplified by each primer set used (Fig. 2). The
18S rRNA and AtRBCS1A have a similar melt curve peaking
at �768C. Although not done in this exercise, the amplifica-

tion efficiencies of the qPCR assay were also addressed (see
the Potential New Experiments section below).

For RT-qPCR data analysis, students used the collected
CTs in combination with the 22DDC

T method to calculate
expression of AtRBCS1A and AtRBCS3B in dark treated
leaves as percentages of those of the controls. Results are
shown in Fig. 3. AtRBCS1A and AtRBCS3B mRNA expres-
sions in the dark were reduced to 0.0075 (0.75%) and
0.0031 (0.31%) of those of the control, respectively. The
results are similar to those observed in pea plants, in which
rbcS mRNA expression is reduced to 1 2 3%, and the pea
pPS-2.4 mRNA is below detection in etiolated leaves [4].
Factors causing the decrease in expressions of both
AtRBCS1A and AtRBCS3B were discussed in class. In addi-
tion to transcriptional regulation [4], RNA stability may
play a role. For example, both transcription and stability of
individual rbcS mRNAs are altered in different tomato
organs and by the developmental program within these
organs as well as by exposure to light [3]. The level of the
abundant rbcS mRNA declined rapidly when potato plants
were placed in the dark [17]. Students’ results also show
that in the dark, the reduction in AtRBCS3B expression
was significantly more than that of AtRBCS1A (t 5 2.74,
p 5 0.026, two-tailed student t test), suggesting possible dif-
ferent regulation mechanisms for the two genes. Previ-
ously, it was shown that the expression of AtRBCS1A to
light stimulation is regulated differently from that of
AtRBCS3B [6]. The variation in the regulation of Arabidop-
sis rbcS gene expressions may have a selective advantage
for the organism, and is not yet understood [6].

First derivative plot (-R’(T) versus temperature) of the melting curve from 558C to 958C showing three peak temperatures

at 76, 78, and 838C (from left to right) for the 18S rRNA/AtRBCS1A, AtRBCS3B and ACTIN2 target DNAs respectively

amplified with the corresponding primers. 18S rRNA and AtRBCS1A have a similar melt curve peaking at �768C. Each

peak is derived from eight (four 18S rRNA and four AtRBCS1A), AtRBCS3B, or ACTIN2 amplified DNA samples.

Comparisons of collected CTs of four genes

studied in this exercise

Gene CTs* Mean 6 S.D.

Actin2 (Control) 25.28, 25.26, 25.07, 25.37 25.23 6 0.13

Actin2 (Dark) 24.66, 25.53, 24.54, 25.97 25.05 6 0.45

AtRBC1A (control) 19.40, 20.19, 19.21, 19.74 19.64 6 0.43

AtRBC1A (Dark) 25.60, 25.62, 26.12, 25.80 25.78 6 0.24

AtRBC3B (Control) 23.95, 24.14, 23.76, 23.95 23.95 6 0.16

AtRBC3B (Dark) 32.96, 32.62, 32.78, 32.45 32.70 6 0.22

18S rRNA (Control) 9.49, 8.18, 9.66, 8.76 8.87 6 0.68

18S rRNA (Dark) 9.96, 9.19, 8.4, 9.71 9.10 6 0.69

*Student data from one of the lab sections.

FIG 2

TABLE 2
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After completing the experiments, each student group
wrote up their results as a report following the format of a
peer-reviewed journal. To further strengthen students’ under-
standing of RT-qPCR applications, each group also made a 15
min power point presentation on a primary research paper
using RT-qPCR/qPCR techniques in Week Three.

Student Assessment
The main objective of this lab exercise was to teach stu-
dents the theory of RT-qPCR and its applications and asso-
ciated techniques by studying AtRBCS1A and AtRBCS3B
mRNA expressions in leaves of 96 hr-dark treated A. thali-
ana. To determine if the lab was successful at meeting
these goals besides obtaining experimental results, we ana-
lyzed the results of pre- and post-lab quizzes in which stu-
dents had to answer two questions: “What is RT-qPCR?”
and “What is its application(s) in research?” We scored the
answer for a proper definition of RT-qPCR and for its major
application in studying gene expression. On the pre-lab
quiz, only 3 out of 21 students provided a correct definition
of RT-qPCR although 16 of 21 students knew what qPCR is.
On the post-lab quiz, 17 of 21 students could properly
define RT-qPCR. The remaining four students still thought
RT-qPCR and qPCR being the same by mistaking “RT” as
“real time”. Extra emphasis should be made to clarify the
confusion. For the pre-lab question on the application of
RT-qPCR, the same 3 of 21 students provided a correct
answer, two of whom were working on student-faculty
research projects using RT-qPCR at the time. For the post-
lab quiz, 19 of 21 students knew the application of RT-
qPCR. Thus, by the end of the exercise, the vast majority of
students properly defined RT-qPCR and understood its
major application in research.

To see if students understood the overall content of the
exercise, the following question was asked in the final

exam. “Based on the collected CTs from the RT-qPCR
experiment that you did, what is your conclusion in terms
of the effect of dark treatment on AtRBCS1A and AtRBCS3B
mRNA expressions?” Nineteen out of 21 (90%) students
gave the correct answer. Most of them also indicated that
the RBCS3B mRNA expression was down-regulated more
than that of the RBCS1A. To see if students were able to
apply what they learned to other experimental settings, the
following questions were also asked. “Using RT-qPCR to
study the effect of a drug on mRNA expression of a
“selfish” gene which is overexpressed to cause cancer in
cells, the results are shown in the table below. (a) What is
the expression of the “selfish” gene in cancer cells treated
with the drug as percentage of that of the ‘no drug’ con-
trol? (b) Does the drug work in treating cancer? Explain.
(c) Is actin a good reference gene for this study? Explain.”

Genes Ct (w/o drug A) Ct (with drug A)

Selfish 25.8 22.78

Actin 25.71 25.41

Seventeen (81%), 15 (71%), and 13 (62%) out of 21 stu-
dents gave the correct answers for questions (a), (b), and (c),
respectively. Although most students could calculate the mRNA
expression in the drug treatment as a percentage of that of the
control, some still had difficulty interpreting the data or failed
to recognize a good reference gene. More practice questions
are needed to improve students’ understanding.

One particular challenge for some students working in
the laboratory was micro-pipetting, particularly setting up
RT-qPCR experiments. A small pipetting variation can
result in a significant difference in the quantity of final
qPCR product and thus CTs and the calculated results. The
larger error bars shown in Fig. 3 probably were the result
of students’ inability to pipette precisely.

Future Modification and Potential
New Experiments
The exercise was successful in accomplishing the main
objectives. Nevertheless, components can be modified or
added into the lab. To ensure good quality RNA samples
were obtained, each student group was previously given
only one leaf sample (control or dark treatment) for RNA
isolation. However, to provide students more hands-on
experience and to reduce the experimental variation, one
future modification is to let each group isolate RNA from
both the control and the dark treatment. Although melting
curves confirm a single qPCR product being amplified by
each primer set as shown in Fig. 2, an agarose gel electro-
phoresis can be added to ensure the right sized products
were obtained (Supporting Information Figure S1). For

Box-plot showing average AtRBCS1A and

AtRBCS3B mRNA expressions in 96 hr-dark-treated

A. thaliana leaves as percentage of those of the con-

trols. The reduction of AtRBCS3B expression

(median 5 0.34%, mean 5 0.31%) is significantly

more than that of AtRBCS1A (median 5 0.89%,

mean 5 0.75%). Bars in the boxes indicate the

medians. Seven data points per gene from two of

lab sections were used. (t 5 2.74, p-value 5 0.026,

two-tailed student t test).

FIG 3
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research, the qPCR products obtained need to be confirmed
with DNA sequencing. Another potential lab component is
to test the qPCR efficiency. The instructor carried out this
experiment earlier, and the results were shown to students
and discussed in-class. Only the % amplification efficiencies
of ACTIN2 and AtRBCS1A were �90% (Supporting Infor-
mation Figure S2). Thus, further modification of the proto-
col is needed to ensure no inhibitors or poor primer pairs
to hinder the qPCR assay. To test qPCR efficiency, students
can make serial dilutions of the reverse transcription reac-
tion containing the cDNAs followed by qPCR of the diluted
cDNAs. The CTs collected are then used to make standard
curves to find the % amplification efficiency of each gene.
Finally, an extended experiment can be added to let stu-
dents test plants treated in the dark for various durations,
that is, 24, 48, and 72 hr to see how the duration of dark
treatment affects mRNA expressions of the two genes.
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