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Are Your Credit Cards Safe From Me? 
Cracking RSA Cryptography 

 
James Clark 

Introduction 
 

We use cryptography every day. Governments 
use it to send secret communications, banks use it 
to send wire transfers, and we use it when we pay 
for anything with a credit card. If we want to send 
private information to anyone, cryptography is used 
in order to keep that information secret. So it is 
understandable that with such a high demand to 
send private information that is secure, it is 
important that the cryptosystem used cannot easily 
be cracked. In order to understand how we have 
reached this point, we shall look at the history of 
cryptography and how it has evolved to the systems 
we use today. 
 
A Brief History and Evolution of Cryptography 
 

The first cryptographic system widely used 
was the Caesar shift cipher. It was first documented  
as being used by Julius Caesar during the Gallic 
Wars to send military  messages [10]. The idea 
behind this cipher is that the letters of the original 
message, or plaintext (represented by lower case 
letters), can be rewritten as different letters to 
create the encrypted message, or ciphertext 
(represented by upper case letters).  An example of 
this is shown in Table 1. If we want to send the 
letter a, we would write D; to send b, we would 
write E; to send c, we write F; and so on and so 
forth. This example is the Caesar shift where the 
alphabet has been shifted by three places. Other 
examples of the Caesar shift can be  seen in Table 
2.  The first one is an example where the ciphertext 
is completely random and the second one begins 
with the keyword or keyphrase Caesar Cipher 
(CAESRIPH) and then the rest of the ciphertext is 
alphabetical from the last letter of the keyphrase. 
Between these three types of Caesar shift 
algorithms, there are 26! permutations  (or 403, 
291, 461, 126, 605, 635, 584, 000, 000) of the 
Caesar cipher. Simon Singh notes in his book The 
Code Book that if we were able to check one key 
per second, it would take a billion times the lifetime 
of the universe to check every key in order to 
decipher the message [10]. Thus there became a 
need for cryptanalysts to break the cryptographer’s 

codes and the war between the cryptographers and 
cryptanalysts began. 
 
 
 
 
 
 

 
 
The Caesar cipher was secure for centuries, 

until frequency analysis was created [10]. The idea 
behind frequency analysis is that  certain letters are 
used more frequently than others and this fact can 
be used to crack the Caesar cipher. Let us assume 
that we are using the English language and have 
intercepted a message encrypted with the Caesar 
cipher. After examining a few texts in English, we 
are able to establish the frequency that each letter is 
used, such as in Figure 1. Since  e is the most 
common letter (as seen by Figure 1), if the 
ciphertext’s most common letter is Q then we can 
assume that Q = e. This pattern can be followed for 
the rest of the letters in the message until the key is 
found 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The next famous cipher was created in the early 
1500s by a former diplomat Blaise de Vigenère[10]. 
His idea was to improve the Caesar cipher by 
encrypting the first letter with one Caesar cipher, 
the next letter with another Caesar cipher, the third 
letter with a third Caesar cipher, and so on and so 
forth. He created what is known as the Vigenère 
square (shown in Figure 2). A table and a keyword  
(such as CODE) would be agreed upon beforehand. 
To send a message, the first letter of the plaintext 
would be encrypted using the C row, the second 
letter with the O row, the third with the D row, and 
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the forth with the E row. Once the end of the 
keyword is reached the encryption would begin 
with the beginning of the code word again (in this 
case, with the letter C ). The advantages of the 
Vigenère cipher is that with longer keywords it is 
more difficult to crack and it is also impervious  to 
frequency analysis. Yet the cipher was eventually 
cracked in the 1850’s by Edward Babbage because 
he was still able to find patterns [10]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 It was not until 1918 when the head of of 
cryptographic research for the U.S. Army, Major 
Mauborgne, created an uncrackable cipher using the 
Vigenère Cipher [10]. The idea behind the cipher is 
that a pad of random letters would be used as the 
keyphrase to encipher a message. Then once that 
message was sent the pad would be thrown away and 
a new pad would be used to encipher the next 
message. This cryptosystem, called the “one-time 
pad cipher”, has three advantages.  The first one is 
that frequency analysis cannot be used since it is a 
type of Virgenère cipher. The second advantage  is 
the number of keys that would have to be tested is 
extremely large. For instance, if one message had 
21 letters for its keyphrase, then there are 2621 or 
518, 131, 871, 275, 444, 637, 960, 845, 131, 776 
permutations  of the one-time pad key, which is more 
than any human or computer could test in a 
lifetime.  The third advantage is best shown by an 
example. Let us say that we have intercepted this 
message from our enemies: 
PEFOGJJRNUKCEIYVVUCXL. Assuming that it is 
a the length of the keyphrase is 21, we can either 
get the message attackthevalleyatdawn or 
defendthehillatsunset or iwanttobeagreendragon.  Now we 
can assume the person sending the message is not 
talking about how he or she wants to be a green 
dragon, but we do not know if our enemy is going to 

attack the valley at dawn or defend the hill at 
sunset. This shows us that we can get conflicting 
messages from the one-time pad cipher. In fact, we 
can get any message that is 21 letters long (assuming 
of course we are using a 21 letter keyphrase) which is 
what makes the one-time pad cipher uncrackable. 

With the two world wars, there was a 
mechanization of cryptography with everything 
from decoder rings to the Enigma machine. All  of 
these cryptosystems  were eventually cracked except 
for the one-time pad cipher [10]. Yet the problem 
with the one-time pad cipher is that we have to 
send the key unencrypted, so we would either have 
to physically hand the key to the other person or 
send an unencrypted  message that enemies could 
possibly intercept. Thus there was a need to be able 
to send encrypted  messages without having to either 
communicate an encryption scheme with the other 
person ahead of time or send unencrypted keys that 
could potentially be intercepted. 
 
Public Key Cryptography 
 
 As we saw with the one-time pad cipher, the 
problem is with the distribution of the key. If two 
people, let us say they are Alice and Bob, want to 
exchange  messages, they must use a key which is a 
secret.  So the problem becomes transmitting the 
secret key to the receiver in order to send the 
encrypted  message safely. In other words, before the 
message is sent they must already have agreed upon a 
key. 
 Whitfield Diffie and Martin Hellman were 
working on the problem of public key cryptography 
and came up with a metaphor of what they wanted 
to accomplish. Let us say that Alice and Bob want 
to send a message to each other without Eve 
intercepting their message.  Alice puts her message 
into a box, locks it with a padlock, and sends it to 
Bob. Bob cannot open it when he receives it because 
he does not have Alice’s key, so he puts his own 
padlock on it and sends it back to Alice.  Once 
Alice receives it, she unlocks  her padlock leaving 
Bob’s padlock to keep the box locked. She sends it 
back to Bob who can now unlock the box and read 
Alice’s message. If Eve intercepts the box at any 
point that it is in transit between Alice and Bob, 
she will not be able to get into it [10]. 

There is a problem with this metaphor from a 
mathematical  perspective that needs to be solved in 
order for the metaphor to work. The padlocks 
represents an encryption that is a one-way function, 
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which means that it is easy to compute forward 
and extremely difficult or impossible to go 
backward (or the inverse of the function is 
difficult/impossible to compute). So Alice first 
encrypts the message, then Bob encrypts the message, 
then Alice decrypts the message, then Bob decrypts 
the message so he can read it.  The problem is that 
usually the last encryption needs to be the first one 
taken off, otherwise the message would not be 
readable [10]. The reason why the metaphor works 
though is because the padlocks are independent of 
each other. So they needed to find a one-way function 
that would work the same way the padlocks do on the 
box. 

Diffie and Hellman solved the problem of key 
distribution in 1976 and outlined the solution in 
their paper “New Directions in Cryptography”. 
This Diffie-Hellman encryption used the fact that 

 
 
 
is a one-way function for which it is extremely 
difficult to find its inverse. For instance, given any 
X we are able to calculate Y . Calculating X from 
Y  where 
 
 
is much more difficult due to the difficulty of 
computing logarithms mod q, which is why the 
technique is so secure [4]. 
 So let us assume that Alice and Bob want to 
send a message to each other. Each of them must 
generate a random number from the set {1, 2, . . . , q 
− 1} (XA for Alice and XB for Bob). Each of 
them are going to keep their respective numbers, X , 
a secret. Alice and Bob will communicate with 
each other and agree on an α and q. Next Alice will 
compute Equation 1 and Bob will compute Equation 
2 and publish these results. 
 
 
 
In order for Alice and Bob to communicate 
secretly, they calculate 
 
 
 
and use that as their key. 
 
Alice obtains KAB by using Bob’s published 
number, YB  and calculates 
 

 
 
 
 
 
Bob obtains KAB in a similar way that Alice 
calculates KAB , 
 
 
 
 
 
 
 
 
If Eve was able to intercept all of the 
information sent between Alice and Bob (α, q, 
YA, and YB ), in order to know KAB she would 
have to calculate 
 

 
 
Diffie and Hellman point out that if logarithms 

mod q could be easily computed then the 
cryptosystem would not work.  While they do not 
have a proof of the this fact (or its converse), they 
could not find a way to compute KAB from YA  
and YB  unless they either have XA or XB . Thus 
they have found a new public key distribution 
where only one key needs to be exchanged and its 
use can be coupled with a directory of user 
information to authenticate Alice to Bob and Bob 
to Alice [4]. The only disadvantage is that we still 
had to communicate the key to the person that we 
want to send the messages. 

It was not until 1977 that Ronald Rivest, Adi 
Shamir, and Leonard Adleman created a public key 
cryptography in which the receiver and sender did 
not have to communicate outside of the encrypted  
messages. We can understand their process with 
another metaphor where Alice wants to send Bob a 
message. Again, she is going to put the message in 
a box, but instead of putting her padlock on the 
box she is going to put on a combination lock 
where Bob knows the combination. So she goes to 
the store and buys the “Bob Combination 
lock,” locks the box and sends the box 
to Bob. So when Bob receives the box, 
he can unlock it and read the message. Yet if 
Eve intercepts the box, she cannot get into it because 
she does not know the combination. So the lock 
itself would be the public key, the combination 
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would be the private key, the lock is the one-way 
function, and Alice and Bob never have to 
communicate outside the encryption. So how does 
RSA work? 

Let us say that Alice wants to let other people, 
such as Bob, send her secure, encrypted messages that 
no one except Alice would be able to decrypt. She 
first selects two distinct primes, p and q, that are 
sufficiently large and random (e.g. not Mersenne 
primes) [3], where the two primes should not be 
close together, and both p − 1 and q − 1 have at 
least one large prime factor [6]. She then will 
multiply the primes together and call that number n 
(so n = pq). Alice then chooses a number e that is 
relatively prime to φ(n) where φ(n) is the Euler φ 
function and denotes the number of positive integers  
less than or equal to n that are also relatively prime 
to n (so φ(n) = φ(p)φ(q) = (p − 1)(q − 1)) [1]. φ(n) 
and e are relatively prime if the greatest common 
divisor between φ(n) and e is 1 (i.e. g.c.d.(φ(n), e) 
= 1) [1]. Once n is calculated and e is chosen, Alice 
has her public key and publishes these numbers in a 
directory. [3][6] 

When Bob wants to send Alice a message, he 
wants to choose a ciphertext message that varies from 
user to user. So Bob wants to choose a plaintext to 
ciphertext algorithm that is uniform throughout the 
system. In order to do this he must first figure out 
what N -letter alphabet he wants to use (e.g. if he 
wants to use all of the letters, numbers, and symbols 
on the keyboard, then N would be 96.). He then 
chooses a k∈ N such that N k−1  < n < N k  (N k  
should also be fairly large, Koblitz writes that it 
should be greater than 200 decimal digits [6]). Bob 
then takes the plaintext and splits it up into blocks 
of k − 1 letters, or (k − 1)-digit base-N integers. 
This means that Bob assigns numerical equivalents 
between 0 and N k−1  for each k – 1 block. We 
similarly take ciphertext into units to be blocks of 
k letters in the N -alphabet. Therefore any 
plaintext message unit will be integers less than N 
k−1  and correspond to an element in Z/nZ for any 
n. Since n < N k , the image f (P ) c Z/nZ  can be 
uniquely written as a k-letter block. It is 
important to note that only the corresponding k-
letter block integers that occur are integers  less than 
n, so not all of the k-block integers will be used. 
We transform the k − 1 block to a k block by 
taking each plaintext k − 1 block, P , and calculate 
C = P e (mod n) where C is the ciphertext block. 
This number C can then be written as a k block 
ciphertext. [6] 

Alice can decode the message by computing 
the e-th roots of the digits received (and they are 
unique since e is relatively prime to φ(n)) [3]. Alice 
can do this by calculating d, where ed ≡ 1 (mod 
φ(n)), by using Euclid’s algorithm on e and φ(n) 
since raising to the d-th power is the same as taking 
the e-th roots.  In fact, Alice can compute d as soon 
as e has been chosen and does not have to remember p 
and q . Consequently, if Eve intercepts the message, 
she can decrypt the message only if she can factor n 
into its two primes since she can repeat Alice’s 
process to calculate d. Therefore the message is secure 
if n cannot be easily factored.[3][6] 

This method does allow Alice and Bob to send 
messages without communicating the key to each 
other, which Diffie and Hellman could not offer 
with their encryption scheme.   Yet what is 
stopping Eve from sending a message to Bob 
pretending to be Alice? To solve this problem 
Alice needs to know Bob’s public key (nB ,  eB ) 
and her private key (nA,  dA).  If nA   < nB , 
Alice would send Equation 3 in order to send her 
signature M . Bob can verify that the message is 
from Alice by calculating Equation 4 where C is 
the ciphertext, dB  is part of Bob’s decipher key, and 
eA  is part of Alice’s encipher key. If nA  > nB , 
Alice would then send Equation 5 and Bob will 
compute Equation 6. [6] 
 
 
 
 
 
 
Therefore the only way that Eve could read 
Alice’s messages or even  send messages as Alice is if 
she can factor nA. So how hard can it be to factor 
nA  into its two prime factors? 
 
Methods of Factorization to Crack RSA 
Cryptography 
 
 If we want to crack RSA cryptography we 
must be able to figure out the prime factorization 
of n.  It is important to note that there are ways to 
manipulate the particular execution of RSA in 
certain cases that would allow Eve to learn the secret 
plaintext intended for Alice by using a chosen-
ciphertext attack [7], but this is outside the scope of 
the project and we will be concentrating on methods 
of factorization to crack RSA cryptography. Thus, 
the most intuitive way to approach the problem is 
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to create a list of primes less than √݊ (e.g. Sieve of 
Eratosthenes or using primality testing on each 
number less than √݊ ) and start dividing n by these 
primes to see if we get another prime q.  Yet if n 
is sufficiently large it may take an extremely long 
time to arrive at n’s factorization. As a result, we 
will be looking at different factorization methods 
in order to find the prime factors of n. 
 
Pollard’s  Rho Method of Factorization 
  
 The first method of factorization that we will 
be looking at is Pollard’s rho method of 
factorization, which is the simplest factorization 
algorithm and substantially faster than the trial  
division of primes less than √݊  [6].  First,  we 
choose an easily evaluated map f : Z/nZ  → 
Z/nZ,  which means  we choose a fairly simple 
polynomial mod n with integer coefficients. It is 
best that this function maps to itself in a disjointed 
manner (and should therefore not be linear and 1-
to-1)[6], some examples of a function that we 
would use are f (x)  = x2  + 1 (mod n) or f (x)  = 
2x2 + x + 5 (mod n).  Next, we choose a 
particular starting values x = x0, where x0 can 
either be selected or randomly generated, and 
compute consecutive iterations of f  (meaning that 
xi+1  = f (xi), for i = 0, 1, 2, · · · ). Finally, we 
compare the different xi’s in order to find two 
with different residue classes modulo  n that are the 
same residue class modulo  a divisor of n. When such 
an xi and xj  are found, we compute the g.c.d.(xj − 
xi, n) to find a prime factor n (meaning not 1 or n) 
and can then find the second prime factor by 
dividing n by the first prime factor. Since we are 
finding a point in the sequence where xi ≡ xj  we 
see that this pattern, which can be seen in Figure 3, 
resembles a Greek letter ρ and is where the method 
obtained its name. [6][8] 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3: Where the Rho Method gets its name 
 

Yet when j becomes substantially large, it is 
time consuming to compute g.c.d.(xj − xi, n) for 
each i < j .We can minimize our work by computing 
one g.c.d. for each j .  When we have found a i0 and a 
j0  such that xi0   ≡ xj0   (mod r) for some r that is a 
divisor of n (i.e. r|n), we have the relation xi ≡ xj  
(mod r) for any pair of indices i, j such that j − i = 
j0 − i0. So when xi ≡ xj  (mod r), then xi+1  = f (xi) 
≡ f (xj ) = xj+1  (mod r) and the sequence xi 
becomes periodic mod r with period j − i.  One 
method then to reduce the number of g.c.d.s  that 
have to be calculated  is after we compute xj   we 
suppose that j is an (h + 1)-bit integer, which 
means that 2h ≤ j < 2h+1  . Let i be the largest h-
bit integer, which means i = 2h − 1. We compute 
g.c.d.(xj − xi, n) for these particular i, j .  If the 
g.c.d. gives a nontrivial divisor of n then we have 
our answer, if not we make the same calculations  
for j + 1. Another method of calculating g.c.d.s is 
to let b equal  the period of the sequence (i.e.  b = j 
− i), then xk   ≡ xl (mod r) whenever k ≡ l (mod 
b), k ≥ i, and l ≥ i. Therefore, if we let k be the 
least multiple of b where  k ≥ i and let l = 2k, 
then xk   ≡ xl (mod r).  As a result, we can 
calculate g.c.d.(x2i − xi, n) to find a nontrivial 
factor of n. [6][8] 

The advantage of these two methods of 
calculating the g.c.d. is that we need to only 
compute one for each j, but the drawback to this is 
that it probably will not detect the first time there is 
a j0 where g.c.d.(xj0 −xi0 , n) is a nontrivial factor of 
n for some i0  < j0.  Nevertheless,  we will find a xj   
and xk   whose difference has a common factor with 
n in less time. Also, the method may be expected to 
disclose the smallest prime factor p of n in roughly 
ඥ݌	cycles, and is therefore faster than trial division 
for large n.  It is important to note that the divisor 
obtained by this method may either be a prime 
factor, a composite number, or even n itself. In this 
situation when it is not a prime factor we would 
have to start over with a new x0, a new function f, a 
new way to compute the g.c.d., or any combination 
of these three inputs. [6][8] 
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Fermat’s  Method of Factorization, Part  I 
 
The second method of factorization that we will 
look at relies on the theorem that every odd number 
in Z can be represented by the difference of two 

squares (∀ acZ, (a + 1)2 − a2 = a2 + 2a + 1 − a2 = 
2a + 1). Thus we can represent the n from the public 
key in RSA cryptography as 
 

If c2 a perfect square, then we have found b and c 
and have therefore found p and q (since p and q 
defined in terms of b and c). If c2 is not a perfect 
square, we evaluate b = [ඥ(݊)] + 2 and compute 
Equation 8 again to see if the new c2 is a perfect 
square. We continue this iterated process until c2 is 
a perfect square and therefore found our factors. [6] 
 If p and q are close together, then ܿ = ௣ି௤

௫
 is 

small and b  is slightly larger than √݊. Therefore 
we will be able to find the factorization of the n 
after a few iterations of this process. So what 
happens if p and q are not close together? The 
Fermat method will eventually find p and q, but 
only after trying a large number of iterations of b, 
but there is a way to minimize the number of 
calculations and find our factorization. First, let 
݇߳Ν be small and  
 
  ܾ = උ√݇݊ඏ + 1.    (9) 
 
We then evaluate 
 
  ܾଶ − ݇݊ = ܿଶ     (10) 
 
and see if ܿଶ is a perfect square. We used the same 
process as before to find a b where Equation 10 is 
a perfect square. Once such a b is found, we know 
that (ܾ + ܿ) = 	 (ܾ − ܿ) = ݇݊ and therefore know 
that ܾ + ܿ and n have a nontrivial common factor. 
We can then find this factor by computing 
݃. ܿ.݀. (ܾ + ܿ,݊) to get one of our prime factors. 
This generalized Fermat method works quicker 
than the method outlined with Equations 7 and 8 
when q is close to kp, and therefore reduces the 
number of b’s that need to be tried to find the 
factorization of n. This method can then be 

generalized even further and leads to a more 
efficient factoring method. [6] 
 
Fermat’s Method of Factorization, Part II 
 
An element ߳ݖ ݊⁄  is a quadratic residue modulo 
n if there exists an ߳ݔ ⁄݌  such that ݔଶ =
 .and means that x is a square root of z ,(݊	݀݋݉)	ݖ
Also, if ݊ =  ,were p  and  q are distinct primes ݍ݌
then every quadratic residue modulo n  has exactly 
four square roots. Therefore, if we are given any 
ܾଶ ≡ 	ܿଶ		(݉݀݋	݊) where ܾ ≢  we can ,(݊	݀݋݉)	ܿ
compute a non-trivial factor since Equation 11 
implies Equation 12.  
 
                      ܾଶ ≡ 	 	ܿଶ	(mod n)   (11) 
      								ܾଶ − ܿଶ ≡ 		0   (mod n)  
(ܾ + ܿ)(ܾ − ܿ) 	 ≡ 		0     (12) 
 
We can then fin d a factor of n by computing 
݃. ܿ.݀. (ܾ + ܿ,݊) or ݃. ܿ.݀. (ܾ − ܿ,݊) since 
݊|ܾଶ − ܿଶ and ݊ ∤ (ܾ + ܿ) or	݊ ∤ (ܾ − ܿ) because 
ܾ ≢ .݃ ,Therefore .(݊	݀݋݉)	ܿ± ܿ.݀. (ܾ + ܿ,݊) =
ݍ is a proper factor of n and ݌ ௡

௣
 is divisible by 

݃. ܿ.݀. (ܾ − ܿ,݊). [5][6] 
 Thus, this quadratic sieve algorithm needs to 
find values for b and c such that their squares are 
equal modulo n. Yet if n  is sufficiently large, a 
random selection of b where the least positive 
residue of ܾଶ (݉݀݋	݊) is a perfect square is 
improbable and is necessary to generalize the 
method to allow flexibility in our choice of b’s to 
evaluate. Thus we want to choose several b’s with 
the condition ܾ௜ଶ	(݉݀݋	݊) is a product of small 
prime powers so that a subset of them will give a b  
whose square is congruent to a perfect square 
modulo n when multiplied together. [5][6] 
 So let B be a factor base, which is set 
ܤ = ,ଶ݌,ଵ݌} … ,  ଵ݌ ௞} of distinct primes (except݌
may be -1). We then must find integers b such that, 
for any given n that we are factoring, ܾଶ	(݉݀݋	݊) 
is the least absolute residue and can be written as a 
product of numbers from B ( found by trial 
division and primarily testing). We will call these 
numbers B-numbers. Also, ܾ௜ should be greater 
than √݊ to ensure thatܾ௜ଶ	(݉݀݋	݊) = 	∏ ܽ௜௝ℎ

௝ୀଵ  and 
the jth component of ߚ௜ = 	   so ,(2	݀݋݉)	௜௝ߙ
 

௝ߚ = 	 ቊ
݊݁ݒ݁	ݏ݅	௜௝ߙ	݂݅	0
	݀݀݋			ݏ݅	௜௝ߙ	݂݅	1

 

  

(7) 

(8) 
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So consider when we have some set of B-
numbers ܾ௜ such that the corresponding vectors 

ఉ೔
→ 

= {βi1, . . . , βih}add up to the zero vector in ܨଶ௛.  
This means that the product of least absolute 
residues of ܾଵଶequals the product of even powers of 
all of the pj   in B.   So if for each i we let ai   be the 
least absolute residue of ܾଵଶ (mod n) and write 
ai= ∏ ൫݌௝൯௛

௝ୀଵ  ݆ܽ݅ we get 
 
 
 
 
 
Since the exponent of each pj  in Equation 13 is an 
even number, we can rewrite the product as a 
square and get Equation 14. Hence, when we set  
  
 
where both b and c are least positive residues, we 
get two numbers whose squares are congruent 
modulo n. [5][6] 
 Of course, this fails if b ≡ ±c (mod n) and we 
must start over again with another collection of B-
numbers whose corresponding  vectors sum to zero 
(this will happen if we choose B-numbers less 

thanට௡
ଶ
 since all of the vectors are zero-vectors and 

we get a trivial congruence). Yet if we choose bi  
randomly we can expect that b ≡ c (mod n) (up to 
±1) at most 50% of the time. The reason for this is 
because any square modulo n has 2r  square roots if 
n has r distinct prime factors. Therefore a random 
square root of b2  has ଶ

ଶೝ
 chance of being ±b (which 

is less than 50% since r ≥ 2). So when we have b2 
≡ c2 (mod n) where  b ≢ ± c (mod n) 
we can find a nontrivial factor of n by computing 
g.c.d.(b + c, n). Koblitz points out that if we go 
through this procedure of finding b and c until we 
find a pair that gives us a nontrivial factor of n, 
there is at most a 2−k  probability that it will take 
more than k tries. [6] 
 We can choose our factor base B and our B-
numbers bi  with a few different methods. One 
method is to start with B consisting of the first h − 
1 primes, let p1 = −1, and choose random bi’s until 
several are found that are B-numbers.  Another 
method is to start choosing some bi  where ܾ௜ଶ (mod 
n) is a least absolute residue and is small in 
absolute value (one way to do this is to choose bi  
close to √݇݊ where k is small).Then, choose B to 
consist of a small set of small primes (with p1 = 
−1) so that several bi’s are B-numbers when 

ܾ௜ଶ(mod n). It is important to note that given the 
collection of vectors in ܨଶ௛, we can be sure to find a 
subset of them that sum to zero because we are 
looking  for a collection of vectors that are linearly 
dependent over the field. We know from linear 
algebra that (

஻భ
→, . . . , 

஻೓
ሱሮ,) is linearly dependent in 

 ଶ௛,   if we have h + 1 vectors that are h-tuples. Soܨ
we will have to generate at most h + 1 distinct B-
numbers to find when 
 
 
 
If h is sufficiently large, it helps to write the 
vectors  as rows in a matrix and use row-reduction 
techniques to find linearly dependent set of rows 
that sum to zero. [5][6] 
 We can now outline a systematic method of 
factoring n using Fermat’s method and factor 
bases.  First, choose an integer y of intermediate 
size (Koblitz gives the example of an intermediate  
size - if n is fifty digits, let y be five or six digits 
[6]). Let B be all of the primes less than or equal to 
y and −1. Next, choose a large number of random 
bi  and try to express ܾ௜ଶ  (mod n) as least absolute 
residues that are products  of the primes in B.  
Once we have obtained (π(y) + 2) B-numbers 
(where π(y) is the number of primes that do not 
exceed y [1]) we generate the corresponding 
vectors, , 

஻೔
→,), in ܨଶ௛  (where h = π(y) + 1) in order 

to get linear dependence. We then put the vectors 
into a matrix and use row-reduction  to determine 
the subset of bi’s whose corresponding  

஻೔
→ add up 

to zero. We then let b= ∏ܾ݅௜ ܿ	and	(݊	݀݋݉) =
	∏ (௝݌)݆

భ
మ
∑ ௜ఈ௜௝	(݉݀݋	݊) so that b2 ≡ c2 (mod n) 

(which gives us Equation 15) . If b ≢ ±c (mod n), 
compute g.c.d.(b + c, n) to get a nontrivial factor of 
n.  If b ≡ ±c (mod n), choose a different subset of 
rows in the matrix of 

஻೔
→’s that sum to zero, adding 

a few more B-numbers and their corresponding 
rows if necessary. If this does not work then we 
start the process over again with new random 
collection of B-numbers.  [6] 
 
Continued  Fraction  Method 
 
The continued fraction method of factorization is a 
refinement of Fermat’s method of factorization 
with factor bases.  In the previous  section we 
needed to find a reliable method of finding integers  
b where  1 ≤ b ≤ n such that  the least absolute  
residue  b2  (mod n) is a product of small primes, 
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which is likely to happen when |b2  (mod n)| is 
small. This method uses continued fractions, hence 
the name, to find b’s such that |b2   (mod n)| <2√݊. 
So we need to understand a few things about 
continued fractions before we can understand this 
factorization method.  
 A continued fraction is defined as follows: 
Given a real number x, we construct its continued 
fraction by first letting 
 
is an integer  (and therefore xk  = 0). The process 
will terminate when x is rational because all xk ’s 
will be rational with decreasing denominators.  
Therefore, the continued fraction looks like 
 
 
 
 
 
 
where Equation 17 is the compact notation of 
Equation 16 and each continued  fraction is unique 
by the way we have defined it [3][6]. So the 
general form of a continued fraction is 
 
 
and we can let q0, q1, . . . , qk  be variables in order 
to manipulate the continued fraction into the 
expression of a quotient of two sums where each 
sum is composed of various products from the set 
{q0, q1, . . . , qk }. We see that if k = 1, 2, 3 we can 
manipulate the continued fraction as 
 
 
 
 
where the value of q1 +

ଵ
௤మ

in Equation 20 is derived 
from Equation 19 and evaluating  q1 and q2  in 
place of q0and q1 respectively.  Equation 21 was 
derived in the same way using Equation 20. Thus, 
we can build out the general continued fraction in 
this manner and can represent the numerator of 
Equation 18 as [q0, q1, . . . , qk ]. When we look at 
Equations 19, 20, and 21 we see that the 
denominator of the expression can be represented 
as [q1, q2, . . . , qk ] since the denominator is 
derived from the numerator of the previous answer. 
Therefore, we can represent the general continued 
fraction as 
 
 
 
 

This will work for all k provided that when k = 1 
we interpret the second bracket as 1 ([q0, q1] = 
q0[q1] + 1 = q0q1 + 1, which is what it is supposed 
to be). [3]  
 So we see that [q0, q1, . . . , qk ] is the sum of 
certain products formed from the set {q0, q1, . . . , 
qk }, but how do we form the products? The 
answer was found by Euler, who was the first to 
give a general account of continued fractions, and 
created “Euler’s rule” to form the products. The 
rule instructs us to first take the product of all the 
terms, then take every product that can be acquired 
by omitting any pair of consecutive terms, then 
take  every product that  can be acquired by 
omitting  any two  separate pairs of consecutive 
terms, and so on and so forth.  The summation of 
these products is equal to the value of [q0, q1, . . . , 
qk ]. If n is odd (giving us n + 1 terms, which is 
even) we add the empty product or the product of 
all the terms omitted, which we have defined as 1.  
This can be proved by induction using the 
recurrence relation in Equation 22. We assume the 
rule holds for the right hand side of Equation 22 
and we have to prove that it holds for the left hand 
side. [q2, q3, . . . , qk ] is the sum of all the products 
formed from the set {q0, q1, . . . , qn} where q0  and 
q1  have been omitted.  Therefore q0[q1, q2, . . . , qk 
] is the sum of all the products formed from the set 
{q0, q1, . . . , qn} where q0  and q1  is not omitted 
since all the products must contain q0.  When that 
factor is removed we are left with the sum of 
products from the set {q1, . . . , qn} where any 
separate pairs of consecutive terms are omitted. 
Thus, we get the appropriate sum of products and 
the rule holds for the function [q0, q1, . . . , qk ] for 
all k. [3]  
 Davenport points out that an immediate 
deduction of Euler’s rule is that the value of [q0, q1, 
. . . , qk ] is the same if the terms are rewritten the 
reverse order, meaning [q0, q1, . . . , qk ] = [qk , qk−1, 
. . . , q0]. This is true because we can express [q0, 
q1, . . . , qk ] in terms of a similar function as 
Equation 22, except with the last term or last two 
terms omitted: 
 
 
This is equivalent to Equation 22 because we can 
rewrite the terms in the opposite order to get [qk , 
qk−1, . . . , q0] = qk [qk−1, . . . , q0] + [qk−2, . . . , q0] 
which is a restatement of Equation 22 with 
different symbols. [3] We can now define the i-th 
convergent of the continued fraction as the 
continued fraction terminated at qi  where i < k of 
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the general continued fraction (Equation 18). The 
value of the i-th convergent is 
 
 
 
where Ai  = [q0, q1, . . . , qi] and Bi = [q1, q2, . . . , qi] 
to simplify notation. We see from this definition 
that the first convergent is஺೚

஻೚
= ௤బ

ଵ
, the last 

convergent ஺ೖ
஻ೖ

 is the continued fraction itself, and 
Ai  and Bi for 0 ≤ i ≤ k are natural numbers defined 
by the sums and products of qi’s as we have 
defined  above.   The recurrence relation from 
Equation 23 can now be represented  as 
 
 
where Bi has q0  omitted. [3] From these two 
equations,  we can show that any two consecutive 
convergents will differ by a factor of (−1)i−1, or 
 
 
 
 
 
 
Therefore, the expression on the left of Equation 
26, which we will call δi, has the property that δi  = 
− δi −1 which can then be recursively defined to 
give us δi  = − δi −1   = +δi−2  = · · · = ± δi  where ± 
δi  is +1 if i is odd and −1 if i is even. Therefore, it 
can be represented by (−1)i−1  due to the fact that 
δ1  = 1 and Equation 27 is true. [3] A consequence 
of Equation 26 is that Ai  and Bi will always be 
relatively prime and therefore the fraction Bi   is in 
lowest terms, which means that all convergents 
(including the continued fraction itself ) is in 
lowest terms. So when we represent a rational 
number ௔

௕
as a continued fraction, the convergents 

of the continued fraction compose a sequence of 
rational numbers with the last one being  ௔

௕
 We can 

see that the convergents will alternately be less 
than and greater than the final value of ௔

௕
	by 

rewriting Equation 26 as 
 
 
Furthermore, since Bi  < Bj for 0 ≤ i < j ≤ k the 
difference in Equation 28 will decrease as i 
increases. We can also see that the even 
convergents will be less than ௔

௕
 the odd convergents 

will be greater than  ௔
௕
, and that each convergent 

will be closer to ௔
௕
 than the previous convergent. 

[3] 
 In order to see  the continued fraction method 
of factoring, we need to use these facts to prove  
that |b2  (mod n)| < 2√݊.  First, if x > 1 is a real 
number whose continued fraction expansion has 
convergents ௕೔

௖೔
 , then |ܾ௜ଶ −  ଶܿ௜ଶ | < 2x. Since x isݔ

between  ௕೔
௖೔

 and ௕೔శభ
௖೔ାଵ

 and the absolute value of the 
difference between the successive convergents is 
ଵ

௖೔௖೔ାଵ
 (from Equation 28) we can see that 

 
 
 
 
 
 
 
 
 
 
 So if n is a positive integer which is not a 
perfect square, we can let ௕೔

௖೔
	be the convergents in 

the continued fraction expansion of √݊ so that the 
residue of ܾ௜ଶ (mod n) is the smallest in absolute 
value (between −௡

ଶ
	and	 ௡

ଶ
	) is less than √݊మ . When 

we apply the previous theorem with x =√݊	we see 
that ܾ௜ଶ≡ ܾ௜ଶ− nܿଵଶ   (mod n)and the latter integer is 
less than √݊మ  in absolute value. This is the key to 
the continued fraction method of factorization 
because we can find a sequence of bi’s that have 
small residues when squared by taking the 
numerators of the convergents of the continued 
fraction expansion of √݊. We do not even have to 
find the actual convergent since we are only using 
the numerator bi  (mod n) and the fact that the 
numerator and denominator of the convergents 
become large is not a problem since we are 
working with integers  less than or equal to n2 
when we are multiplying integers modulo n. [6] 
  So here is the algorithm for the continued 
fraction method of factoring. Let n be the integer 
that we want to find its factorization. We first set 
b−1  = 1, b0  = a0 = = උ√݊ඏand ݔ଴ = √݊ − ܽ଴ and 
compute ܾ଴ଶ(mod n) [or ܾ଴ଶ − n].  Next, for i = 1, 2, 
. . . we first set ai  = ቔ ଵ

௫೔షభ
ቕ(mod n), then set bi  = 

aibi−1 + bi−2  (mod n) and compute ܾ௜ଶ  (mod n). 
After this is done for several i, we look at the bi  
(mod n) which factor into ± a product of small 
primes. We then create a factor base B that are 
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composed of −1and the primes that occur more 
than once of the set ܾ௜ଶ (mod n) or occur with an 
even power in just oneb2  2i (mod n). We then 
list all of the numbers ܾ௜ଶ  (mod n) which are B-
numbers, along with their correspondingβi   of 
zeros and ones and find a subset whose vectors 
sum to zero. We  then set b  = ∏ܾ݅௜(mod n) and c 

௝݌∏  =
భ
మ
∑ఈ௜௝

where pj are the elements of B\{−1} 
and the sum is taken over the same subset of i.  If 
B≢	± c (mod n), then g.c.d.(b + c, n) is a 
nontrivial factor of n.  If b ≡ ± c (mod n), then we 
evaluate a different subset of i such that ∑ܤపሬሬሬ⃗ = 0. If 
this is not possible, then more ai, bi, and ܾ௜ଶ (mod 
n) must be computed to expand our factor base B.  
[6] 
 
Which  Method  Is The Best?: The Advantages 
and Disadvantages of Each Method 
 
 While there are other methods of factoring 
that could be used (e.g. elliptic curve factorization, 
index calculus method, etc.) in order to crack RSA 
cryptography, these three methods are the simplest 
factoring methods that  I could find.   So now that  
we have  these three methods, which one is the 
best for cracking RSA cryptography? 
 
Pollard’s  Rho Method vs. Fermat’s  Method 
(Part I) 
 
 Pollard’s rho method of factorization is the 
simplest factorization algorithm of the ones 
discussed  in this paper.  Simple calculations such 
as evaluating a chosen function, doing modular 
arithmetic, and finding the greatest common 
divisor of two  numbers are all simple to do by 
hand or to code into a computer program (and all 
of these calculations are computationally 
inexpensive to calculate), yet there are some 
disadvantages to this method. The first one is that 
there are many computations that need to be done 
to find the factorization. This increase in the 
number of computations can lead to errors (when 
calculating by hand as well as coding  a computer 
program) and increase the time it takes to find the 
answer. Even if the functions are computationally 
inexpensive to calculate in a computer program, 
the number of calculations that have to be done 
will add up and therefore take longer to find the 
prime factors. Second, we may not find the factor 
on the first attempt which means that we would 
have to start over with either a new function f , a 

new starting value x0, a new way to compute the 
g.c.d., or any combination of these three inputs. 
The third problem is that there are too many 
choices for inputs. It is not something that can 
immediately  be executed [like Fermat’s method 
(Part I)] and the choices that are made do not 
guarantee  success, thus causing our choices to be 
re-evaluated  for the second round of calculations 
if we do not get a proper factor. 
 Fermat’s method (Part  I),  on the other hand, 
is a little  more complex than the rho method in its 
computations, yet it is immediately executable and 
will give us the answer the first time (even if it 
takes a while). The disadvantage to Fermat’s 
method is that when it is being executed by a 
computer program there is a chance that there is a 
problem with overflow errors (e.g. t2  or n exceed 
the upper bounds of the computer’s computational 
limits). 
 In order to examine  each method further I 
wrote C programs for both methods. For each 
method I tested 24 numbers that were 19 digits in 
length (the highest my computer could test) where 
the primes were randomly generated and had 
varying distances between each other. The results 
for each of these numbers can be seen in Table 4 
on page 15, but my findings can be summarized in 
Table 3 where I look at the average time each 
method took to calculate the prime factors  as well 
as if the method is successful on this first try. 
There are two things that are important to note 
about the results. The first is that for the rho 
method I used f (x) = x2 + x + 1, x0  = 2, and I used 
the first method to calculate the g.c.d. that was 
outlined in the rho method section on page 6. The 
second thing is that for Fermat’s method (Part I), I 
was only able to write a program using Equations 7 
and 8 and not Equations 9 and 10 since I was using 
values of n close to the upper bound of my 
computer’s limits and calculating kn in Equation 9 
would have caused overflow errors. As Table 3 
shows, the rho method took an average time of 26 
minutes to compute an answer and 33% of the time 
it was able to find the correct prime factorization 
of n. This means that 66% of the time it did not 
give me an answer, but it could with different 
initial conditions. Conversely, Fermat’s method 
took an average time of less than a tenth of a 
second and was always able to find the 
factorization of n. Therefore, when comparing  
these two methods of factorization, I have found 
that Fermat’s method of factorization is faster and 
more reliable. 
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Fermat’s  Method (Part I) vs.  Continued  
Fraction  Method and Fermat’s Method (Part 
II) 
 
 Since the continued fraction method of 
factorization is a refinement of Fermat’s 
factorization with factor bases, there is no point in 
comparing  these two methods. Instead, we shall 
compare Fermat’s method (Part I) and the 
continued fraction method. We can see from the 
descriptions of the Fermat’s method (Part II) and 
continued fraction method that the process is more 
intricate and complex than Fermat’s method (Part 
I), yet the mathematics involved is still elementary. 
While I was able to write a C program for Fermat’s 
method (Part I), I was not able to for Fermat’s 
method (Part II) or the continued fraction method 
due to the complexity of the process and my 
introductory knowledge of C programming. Thus I 
was not able to compare the two methods  as I did 
with Pollard’s rho method and Fermat’s method 
(Part I). Assuming that I had the knowledge to 
write such a program, the calculations involved can 
be programmed  on a computer with single-
precision floating point  and it lends itself to 
parallel processing. The computers can even be 
linked by e-mail to complete the task.  The 
disadvantage is that it is very memory-intensive so 
that you need a good deal of computing power, 
while Fermat’s method (Part I) can be done on a 
calculator. Also, the continued fraction method 
works best for numbers that are roughly 300 bits 
long. The reason for this is that the continued 
fraction method requires that we find primes  less 
than the number  we are factoring, and primality 
testing and trial division of large numbers becomes 
increasingly  difficult.  Therefore, for numbers that 
are roughly 300 bits long the continued fraction 
method works as well as Fermat’s method (Part I) 
but can find the results quicker. For numbers 
greater than 300 bits long, it can still find the 
answer but Fermat’s method (Part I) will probably 
be quicker.  [2][5][8] 
 
Conclusion of Cracking RSA  Cryptography 
 
We  have looked at three different  methods of 
factorization in this paper, and while they all have 
their advantages and disadvantages, they are all 
capable of factoring the public key in RSA 

cryptography. So is RSA cryptography secure?  
Yes.  But how can that be?  The first reason why 
this is true is the size of the public key.  When I 
was factoring numbers with the computer 
programs I wrote, the largest number my computer 
could handle was 9, 000, 000, 114, 000, 000, 361 
which is 19 digits long and less than 64 bits. RSA 
keys are typically 1024-2048 bits long [9], 
meaning that the public key n is 21024 − 1 ≤ n ≤ 
22048 − 1. That means the public key is somewhere 
between 309-617 digits long which is outside the 
bounds of any personal computer and cannot be 
factored with any C programs of the factorization 
methods above. The second reason RSA 
cryptography is secure is that even if we had a 
computer that could factor these numbers,  it 
would take an extremely long time. The primes 
chosen to create n follow a set of conditions (see 
page 5) such that factorization is made extremely 
difficult and maximizes the amount of time to find 
its factorization. Also, the people who use RSA 
cryptogrpahy switch their keys on a regular basis. 
So by the time we have found the factorization of 
their public key, they have started using a new key 
and our work has been for nothing (except the 
satisfaction that we now know the factorization of 
a very large number, but that is not worth much). 
Therefore, RSA cryptography is secure not 
because it is uncrackable, but the amount of time 
and effort that must go into to cracking it is not 
realistic or feasible. 
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