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Stability Analysis of FitzHugh – Nagumo with Smooth Periodic Forcing 
 

Tyler Massaro 
1 Background 

 
As Izhikevich so aptly put it, 

“If somebody were to put a gun to the head of 
the author of this book and ask him to name the 
single most important concept in brain science, he 
would say it is the concept of a neuron[16].” 

 
By no means are the concepts forwarded in his 

book restricted to brain science.  Indeed, one may 
use the same techniques when studying most any 
physiological system of the human body in which 
neurons play an active role.  Certainly this is the 
case for studying cardiac dynamics. 

 On a larger scale, neurons form an incredibly 
complex network that branches to innervate the 
entire body of an organism; it is estimated that a 
typical neuron communicates directly with over 
10,000 over neurons [16].  This communication 
between neurons takes the form of the delivery and 
subsequent reception of a traveling electric wave, 
called an action potential[1].  These action 
potentials become the subject of Hodgkin and 
Huxley’s groundbreaking research. 

 At any given time, the neuron possesses a 
certain voltage difference across its membrane, 
known as its potential.  To keep the membrane 
potential regulated, the neuron is constantly 
adjusting the flow of ions into and out of the cell.  
The movement of any ion across the membrane is 
detectable as an electric current.  Hence, it follows, 
that any accumulation of ions on one side of the 
membrane  or the other will result in a change in 
the membrane potential.  When the membrane 
potential is 0, there is a balance of charges inside 
and outside of the membrane. 

 Before we begin looking at Hodgkin and 
Huxley’s model, we must first understand how the 
membrane adjusts the flow of ions into and out of 
the cell.  Within the cell, there is a predominance of 
potassium, K+, ions.  To keep K+ ions inside of the 
cell, there are pumps located on the membrane that 
use energy to actively transport K+ in but not out.  
Leaving the cell is actually a much easier task for 
K+: there are leak channels that “randomly flicker 
between open and closed states no matter what 
conditions are inside or outside the cell...when they 
are open, they allow K+ to move freely[1].” 

Since the concentration of K+ ions is so much 
higher inside the cell than outside, there is a 
tendency for K+ to flow out of these leak channels 
along its concentration gradient.  When this 
happens, there is a negative charge left behind by 
the K+ ions immediately leaving the cell.  This 
build-up of negative charge is actually enough to, 
in a sense, catch the K+ ions in the act of leaving 
and momentarily halt the flow of charge across the 
membrane.  At this precise moment, “the 
electrochemical gradient of K+ is zero, even though 
there is still a much higher concentration of K+ 
inside of the cell than out[1].”  For any cell, the 
resting membrane potential is achieved whenever 
the total flow of ions across the cell membrane is 
balanced by the charge existing inside of the cell.  
We may use an adapted version of the Nernst 
Equation to determine the resting membrane 
potential with respect to a particular ion[1]: 

 
V = 62log10Co/Ci, 
 
where V is the membrane potential (in mV), Co 

is the ion concentration outside of the cell, and Ci  
is the ion concentration inside of the cell. 

 Before we continue, it is important to revisit 
the concept of action potentials.  Neurons 
communicate with each other through the use of 
electric signals which alter the membrane potential 
on the recipient neuron.  To continue propogating 
this message, the change in membrane potential 
must travel the length of the entire cell to the next 
recipient.  Across short distances, this is not a 
problem.  However, longer distances prove to be a 
bit more of a challenge.  To compensate for any 
amplification that may need to take place, the input 
of an amount of electrical stimulation beyond a 
certain threshold yields our aforementioned action 
potential.  These action potentials can carry 
messages at speeds of up to 100 meters per 
second[1]. 

 Physiologically speaking, there are some key 
events taking place whenever an action potential is 
discharged.  Once the cell receives a sufficient 
electrical stimulus, the membrane is rapidly 
depolarized; that is to say, the membrane potential 
becomes less negative.  The membrane 
depolarization causes voltage-gated Na+ channels to 
open.  (At this point, we have not yet discussed the 
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role of sodium in the cell.  The important thing to 
understand is that the concentration of sodium is 
higher outside of the cell than on the inside.)  When 
these Na+ channels open up, they allow sodium ions 
to travel down their concentration gradient into the 
cell.  This in turn causes more depolarization, 
which causes more channels to open.  The end 
result, occurring in less than 1 millisecond, is a 
shift in membrane potential from its typical resting 
value of about -60mV to somewhere around 
+40mV[1].  The value of +40mV actually 
represents the resting potential for sodium, and so 
at this point no more sodium ions are entering the 
cell. 

 

Figure 1 - Diagram of Action Potential 
http://internal.psychology.illinois.edu/~etaylor4/
action_potential.jpg 

 
 Before the cell is ready to respond to another 

signal, it must first return to its resting membrane 
potential.  This accomplished in a couple of 
different ways.  First, once all of the sodium 
channels have opened, they switch to an inactive 
conformation which prevents them from opening 
back up (imagine putting up a wall in front of an 
open door).  Since the membrane is still 
depolarized at this point, the gates will stay open.  
This inactive conformation will persist as long as 
the membrane is sufficiently depolarized.  Once the 

membrane potential goes back down, the sodium 
channels switch from inactive to closed [1]. 

 At the same time that all of this occurring, 
there are also potassium channels that have been 
opened due to the membrane depolarization.  There 
is a time lag which prevents the potassium gates 
from responding as quickly as those for sodium.  
However, as soon as these changes are opened , the 
K+ ions are able to travel down their concentration 
gradient out of the cell, carrying positive charges 
out with them.  The result is a sudden re-
polarization of the cell.  This causes it to return to 
its resting membrane potential, and we start the 
process all over again [1]. 

 As a special note of interest, cardiac cells are 
slightly different from nerve cells in that there are 
actually two repolarization steps taking place once 
the influx of sodium has sufficiently depolarized 
the cell: fast repolarization from the exit of K+ ions, 
and slow repolarization that takes place due to an 
increase in Ca2+ conductance [26].  For now, we 
will continue dealing solely with Na+  and  K+. 

 At this point, it is time to take a look at the 
models these physiological processes inspired.  
Arguably the most important of these was created 
by Alan Lloyd Hodgkin and Andrew Huxley, two 
men who forever changed the landscape of 
mathematical biology, when in 1952, they modeled 
the neuronal dynamics of the squid giant axon.  
Below are listed the complete set of space-clamped 
Hodgkin-Huxley equations [14, 16]: 

where 
 
 
 
 
 
 
 
 
 
 
The E values represent shifted Nernst 

equilibrium potentials, C is the capacitance, and the 
g,g values represent maximal conductances.  Our 
state variables are as follows: V is the membrane 
potential, and m, n, h are the activation variable for 
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the voltage-gated transient sodium current (there 
are three), the voltage-gated persistent potassium 
current (there are four), and the inactivation gate 
(there is only one), respectively.  Each of the 
activation variables represents the empirically 
determined probability that a particular channel will 
be open based upon the current membrane 
potential. 

 To provide some background, let us consider 
two equations from physics.  Our first is the 
standard version of Ohm’s Law[27]: 

 
V = IR, 

 
where V is the total voltage of a circuit, I is the total 
current, and R is the total resistance.  Our second 
equation is Ohm’s Law for Capacitors [27]: 

 
CV = I, 

 
where C is the total capacitance, V is the change in 
voltage, and I is the instantaneous current passing 
through the capacitor. 

 Returning to the first line of the H-H 
equations, we see that this is simply an 
implementation of Ohm’s Law for Capacitors, with 
the right-hand side showing a total summation of 
currents for each particular channel, plus the 
injected current, I.  The terms of each of the 
currents may look somewhat unfamiliar, since they 
include the product of the conductance, a voltage, 
and a value representing the percentage of those 
particular channels that are open.  Recall that 
conductance is simply the inverse of resistance, and 
it is apparent now that each of these terms may be 
derived from Ohm’s Law.  In general, we have the 
following equation, given particular membrane 
conductances (gi’s) and reverse potentials  (Ei’s) 
[16]: 

Taking a look at the next three lines, we see the 
equations for the activation of variables.  The α and 
β terms represent the different Boltzmann and 
Gaussian functions, which together describe the 
steady-state activation curve for each particular 
gating variable [16].  In other words, m, n, and h 
represent, respectively, the voltage-dependent 
probability that the sodium, potassium or 
inactivation gate is open. 

 Shortly after Hodgkin and Huxley published 
their model, biophysicist Richard FitzHugh began 

an in-depth analysis of their work.  He discovered 
that, while their model accurately captures the 
excitable behavior exhibited by neurons, it is 
difficult to fully understand why the math is in fact 
correct.  This is due not to any oversight on the part 
of Hodgkin and Huxley, but rather because their 
model exists in four (4) dimensions.  To alleviate 
this problem, FitzHugh proposed his own two-
dimensional differential equation model.  It 
combines a model from Bonhoeffer explaining the 
“behavior of passivated iron wires,” as well as a 
generalized version of the van der Pol relaxation 
oscillator [14].  His equations, which he originally 
titled the Bonhoeffer-van der Pol (BVDP) 
oscillator, are shown below [14, 26]: 

In his model, for which Jin-Ichi Nagumo 
constructed the equivalent circuit the following 
year in 1962, x “mimics the membrane voltage,” 
while y represents a recovery variable, or 
“activation of the outward current [16].”  Both a 

and b are constants he supplied (in his 1961 paper, 
FitzHugh fixes a = 0.7 and b = 0.8).  The third 
constant, c, is left over from the derivation of the 
BVDP oscillator (he fixes c = 3).  The last variable, 
z, represents the injected current.  It is important to 
note that in the case of a = b = z = 0, the model 
becomes the original van de Pol oscillator [14]. 

 Many different versions of this model exist 
[16, 17, 26], all of them differing by some kind of 
transform of variables.  We will consider the model 
used by Kostova et al. in their paper, which 
presents the FitzHugh-Nagumo model without 
diffusion: 

 
where g(u) = u(u - λ) (1 - u), 0 < λ < 1 and a, ε > 0 
[17].  Here, the state variable u is the voltage, w is 
the recovery variable, and I is the injected current. 
 
 
 

3

Massaro: Stability Analysis of FitzHugh–Nagumo with Smooth Periodic Forcin

Published by KnightScholar, 2012



 39 

2 Stability Analysis via a Linear 
Approximation 
 

2.1 Examining the Nullclines 
 

 When studying dynamical systems, it is 
important to be familiar with the concept of 
nullclines.  In a broader sense, a nullcline is simply 
an isocline, or a curve along which the value of a 
derivative is constant.  In particular, the nullcline is 
the curve along which the value of the derivative is 
zero.  Taking another look at FH-N (1.1), we see 
that there are two potential nullclines, one where 
the derivative of u will be zero, and the other where 
the derivative of w will be zero: 

One of these nullclines is cubic, and the other 
is linear.  Consider an intersection of those two 
graphs.  At that particular point, we know that                 
 
 
Hence, at this point, neither of our equations is 
changing.  This point where our nullclines intersect 
is called an equilibrium, or fixed point.  Since our 
nullclines are cubic and a line, geometrically we 
see that there could be as many as three possible 
intersections, and no fewer than one.  Let us 
consider the case where I = 0.  Our system 
becomes: 
 
 
 
 
 
 
Evaluating the system at the origin, where u = w = 
0, we can see that this is always an equilibrium 
when I = 0. 

 
2.2 Linearizing FitzHugh - Nagumo 

 
Unless otherwise state, we will assume I = 0 

for the next few sections.  Similarly, (ue, we) will 
always refer to an equilibrium of FH-N (not 
necessarily the origin).  Let us define the functions 
f1 and f2 as the following: 

 
f1 : = εg (u) –w + I, 
f2: = u – aw.             

 
Finally, we also set b1 = g1 (ue), a notation we get 
from Kostova et al. [17]. 

 
2.2.1 Creating a Jacobian 

 
We may linearize FH-N by constructing a 

Jacobian Matrix as follows: 

We see that for any equilibrium, J (ue, we) has the 
same form, since we have the substitution in place 
for b1.  Thus, we may generalize the eigenvalues of 
the above Jacobian to be the eigenvalues of any 
equilibrium.  Solving the characteristic polynomial 
for our Jacobian, we get the following eigenvalues: 

As long as it is never the case that Re(µ1) = Re (µ2) 
= 0, the eigenvalues will always have a real part, 
and then our equilibrium is hyperbolic (see 
definition below).  By the Hartman - Grobman 
Theorem, we know that we may use the Jacobian to 
analyze the stability of any fixed point of FH-N. 
 
Hyperbolic Fixed Points (2-D).  If Re (µ) ≠ 0 for 
both eigenvalues, the fixed point is hyperbpolic 
[29]. 

 
The Hartman-Grobman Theorem.  The local 
phase portrait near a hyperbolic fixed point is 
“topologically equivalent” to the phase portrait of 
the linearization; in particular, the stability type of 
the fixed point is faithfully captured by the 
linearization.  Here topologically equivalent means 
that there is a homeomorphism that maps one local 
phase portrait onto the other, such that trajectories 
map onto trajectories and the sense of time is 
preserved [29]. 
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2.2.2 Trace, Determinant, and Eigenvalues 
 

From Poole [24], we find two results which tie 
together the trace, J, and determinant, ), of a matrix 
with its eigenvalues.  For any n x n matrix, A, with 
a complete set of eigenvalues, (µ1, µ2,...µn), we 
know: 

 
 
 
For our Jacobian evaluated at an equilibrium, 

we have: 
 
 
 
Using the table in theorem 12.2.1 (see below, 
Figure 2) from Nagle [23], we may find the 
different types of fixed points for each given pair of 
eigenvalues.  We now explore the different stability 
cases for a given set of real eigenvalues. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Case 1.  Let εab1 < 1.  Then ΔJ > 0.  Evaluating the 
trace, we see that for  εb1 > a, we get τJ > 0, which 
therefore means that we have a dominate positive 
eigenvalue.  Since  ΔJ > 0, we know that both of 
our eigenvalues must then be positive.  This gives 
us an unstable source.  For  εb1 < a, we get τJ < 0.  
This time however, since ΔJ > 0, both of our 
eigenvalues are negative, and so the system is a 
stable sink. 

 
Case 2.  Let εab1 > 1.  Then ΔJ < 0.  Hence, our 
eigenvalues are different signs.  In this case, the 
equilibrium is an unstable saddle. 

 
2.3 Bifurcation Analysis 

 
An important area to study in the field of 

dynamics is bifurcation theory.  A bifurcation 

occurs whenever a certain parameter in a system of 
equations is changed in a way that results in the 
creation or destruction of a fixed point.  Although 
there are many different classifications of 
bifurcations, we will focus only on one. 

 
2.3.1 Hopf Bifurcation 

 
Consider the complex plane.  In a 2-D system, 

such as FH-N, a stable equilibrium will have 
eigenvalues that lie in the left half of the plane, that 
is, the Re(µ) < 0 half of the plane.  Since these 
eigenvalues in general are the solutions to a 
particular quadratic equation, we need them both to 
be either real or negative, or complex conjugates in 
the same Re(µ) < 0 part of the plane.  Given a 
stable equilibrium, we may de-stabilize it by 
moving one or both of the eigenvalues to the Re(µ) 
> 0 part of the complex plane.  Once an equilibrium 
has been de-stabilized in this manner, a Hopf 
bifurcation has occurred [29]. 

 
2.3.2 Proposition 3.1 (From Kostova) 

 
As the eigenvalues µ 1, µ 2 of any equilibrium 

(µ1, µ2) are of the form 
 

 
where ܳ(ߝ,ܽ, ܾଵ) ≡ ,ܽ,ߝ ܾଵ − 1	ܽ݊݀	ܴ ≡ ଵܾߝ −
ܴ	ℎ݁݊ݓ	ݏ݁ݏܽܿ	݊݅	ݏݎݑܿܿ݋	݊݋݅ݐܽܿݎݑ݂ܾ݅	݂݌݋ܪ	ܽ =
0	ܽ݊݀	ܳ < 0   [17]. 

 
Proof. Recall from earlier that we defined the 
Jacobian for FH-N as follows: 

Now we solve for the eigenvalues of this matrix 
evaluated at an equilibrium. For equation 2.1 we 
know our eigenvalues have the following form:  

Both of these eigenvalues are along the imaginary 
axis. This is the exact point at which Hopf 
bifurcation occurs. 
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3   Stability Analysis via Lyapunov’s Second 
Method 
 
At the end of nineteenth century, Russian 
mathematician Aleksandr Lyapunov developed an 
entirely new approach to analyzing the stability of 
nonlinear systems. His technique, now referred to 
as the direct method, yields more insights about 
equilibrium  stability than the comparable linear 
approach. Specifically, in addition to standard 
classification of fixed points,  one may  also assess 
regions  of asymptotic stability. However, more 
thorough results come at the cost of requiring  the 
use of special auxiliary functions [6]. The ability to 
create these functions  has been described as more 
of an art than an actual science, with one author 
going so far as to suggest that “[d]ivine intervention 
is usually required... [29].”  In this next section, we 
analyze the Lyapunov functional published by 
Kostova et al. in their paper [17]. 
 
3.1   Defining Positive and Negative Definite 
 
Primary  among these auxiliary functions,  and 
described in terms of conservation laws, are the 
total energy of a system, V , and its derivative, 
which Brauer and Nohel refer to as V ✝. Keeping  
these in mind, it is important to 
become familiar with the definitions described 
below for a function which is positive or negative 
definite in a region centered about the origin. Later 
on, we will consider regions of positive or negative 
definiteness centered about an equilibrium of FH-N 
(1.1), by shifting this equilibrium to the origin. 

Positive Definite. The scalar function V ቀ
௬
→ቁ is 

said to be positive definite on the set Ω if and 
only if V ቀ

଴
→ቁ = 0 and V ቀ

௬
→ቁ > 0 for ≠ 0	and	

௬
→ in Ω [6]. 

Negative Definite.  The scalar function V ቀ
௬
→ቁis 

negative definite on the set Ω if and only if –d V 
ቀ
௬
→ቁ is positive definite on Ω [6]. 

Derivative of V. The derivative of V with 
respect to the system

௬భ
ሱሮ= ݂ ቀ

௬
→ቁ is the scalar 

product V*ቀ
௬
→ቁ = grad	V	 ቀ

௬
→ቁ 	݂ ቀ

௬
→ቁ 

In terms of the FitzHugh-Nagumo model, Kostova 
et al. offer the following for V (u, w) 
 
 
 
Before we continue, the direct method requires that 
our function, V (u, w), be positive definite. Suppose 
we have some region, Ω, of the u, w-plane, which 
encloses an equilibrium, (ue, we). Evaluating V (ue, 
we), we get: 

 
This however is not enough to guarantee that V will 
be positive definite. We must now verify that V (u, 
w), > ௘ݑ)Ω߳(ݓ,ݑ)	∀0  ௘). To do this, we willݓ,
need some notation from Kostova: 
 
 
 
 
 
where ܾଵୀইᇲ(௨೐) and ܾଶ	 =

ই"	(௨೐)

ଶ
 (refer to the line 

immediately following equation 1.1 for a definition 
of g(u)).  
Let line L be defined by L= ݑ|(ݓ,ݑ)} = ௘ݑ +
 .݁ݓ−ݓܽ
 
3.1.1 Proposition 2.2a (from Kostova) 
 
V (u,w)> 0	for all 
(ݓ,ݑ) ≠ ௘ݑ) ܶ	݂݅	ݕ݈݊݋	݀݊ܽ	݂݅(௘ݓ, > 0. ܶ	݂ܫ ≤
0, ܸ	ℎ݁݊ݐ ≤ 0	is a bounded set B, which is 
symmetric about the line L [17]. 
 
Proof. Consider a Taylor series expansion of g(u) 
at the equilibrium, taking note that the terms of 
order 4 or greater vanish:  
 
 
 
Before we continue, we first go back to FH-N. By 
definition, we know that ୢ௨

ୢ௧
= 	ୢ௪

ୢ௧
= 0 at the 

equilibrium.  Evaluating the system at the 
equilibrium,  we get the following two results: 
 
 
 
 At this point, recall how the definitions for positive 
and negative definiteness provided at the beginning 
of the section require V(u,w) to be 0 at the origin of 
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the system. Thus far, we have only been 
considering regions that surround some general 
equilibrium. However, from section 2.1, we know 
that the origin will always be an equilibrium 
whenever I = 0. By introducing these 
transformations  from Kostova, we may easily 
translate all of our functions to be situated around 
the origin: 
 
 
The original FH-N system (1.1) becomes: 
 
 
 
 
 
 
The line L is now described by the equation y = 0. 
Note that V and  G have also changed:  
 
 
 
 
 
 
At this point, there are well-documented  methods 
for determining Lyapunov functionals in a system 
of the form seen above in equation 3.1 [4]. 
 
Consider V (x, y).  We know that  
ଵ
ଶ
ଶݕ ≥  To better understand V (x, y) we	ℝ.߳	ݕ∀	0

must focus our attention on G(x).  
Recall that 
 
 
 
 
Already we know that  ଵ

ସ
ℇܽݔଶ ቂܽଶݔଶ − ସ

ଷ
ଶܾݔܽ −

2 ቀܾଵ −
ଵ
௔ℇ
ቁቃ.	Now, we must consider the other 

term. By completing  the square, we see that 
 
 
 
 
 
After some algebra, we introduce the constant T as 
described at the beginning  of our proof, giving us: 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Up to this point, we have determined regions in 
which V is positive or negative definite. Before we 
may begin assessing the stability of FH-N, we must 
find similar regions of positive and negative 
definiteness for V. 
 
3.1.2 Proposition 2.2b (from Kostova) 
 
On L the derivative V= డ௏

డ௨
ݑ + డ௏

డ௪
 .0= ݓ

Additionally, V<0 if S <0 and (u,w) ∉ .ܮ ܵ	݂ܫ ≥ 0 
there exists an ellipse ߲ܧ, surrounding a region E 
such that : i) V < 0 if (u,w) belongs to the 
complement of ߲ܧ	 ∪ ܧ ∪ ;ܮ ݅݅)	ܸ > (ݓ,ݑ)	݂݅	0 	 ∈
ܧ	 ൗܮ .[17]. 
 
Proof. Let us first make a change of variables to V. 
by definition, we have that:  

Borrowing from calculations performed during the 
proof in Section 3.1.1, we get:  

Recall also that the line L has the equation y = 0. It 
is then clear that V(x, y) = 0 on L, which includes 
the origin. To make further insights about  V(x, y) 
however, we must consider f (x, y). From before, 
we have: 

Completing the square for a quadratic with respect 
to y, we get 
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Once again, we complete the square, this time using 
constant terms with respect to y: 
 
 
 
 
 
 
 
Now we substitute back in for S, seeing that our 
expression becomes  
 
 
 
 
 
 
 
 
 
 
 
 
3.2   Lyapunov’s Theorems for Stability 
 
We have successfully found regions in the x, y-
plane (a transformed version of the u, w-plane) 
where our function V (x, y) and its derivative V(x, 
y) are positive or negative definite.  The following 
theorems from Brauer and Nohel provide for us a 
way to analyze the stability of FH-N in light of the 
regions we have found. 
 
 
 
 
 
 
 
 
3.2.1  Proposition 2.2c (from Kostova) 
 
If εb1a <1 and εb1(ue, we) which no solution curves 
of FH-N (3.1) enter. If εb1a <1 and εb1 < a, there is 
a neighborhood of the equilibrium  which no 
solution curve leaves. These neighborhoods  can be 
found explicitly by using level curves of V [17] 
 
 
 
 

Proof. Recall that: 
 
 
 
 
 
Case 1. Let εb1a <1. Whenever 1- εb1a > ଶ

ଽ
ℇܾܽଶଶ, 

there is some neighborhood of (ue, we) = (0, 0) such 
that V (x,y) >0 for all x and y in that neighborhood. 
Recall also that before, we defined the set, B, such 
that V (x,y) ≤ 0 ∀	(ݕ,ݔ) ∈  Hence if B exists in .ܤ
this case then it does not contain the origin. 
Consider how εb1> a. Then, we know that S (or 
௕మమ

ଶ
+ ܾଵ −

௔
ℇ
 ), is strictly greater than 0. Hence, 

V(x,y) > 0∀	(ݕ,ݔ) ∈  .ܮ\ܧ
 
Evaluating	݂(ݕ,ݔ) at the origin, we get: 

But, we have assumed εb1 > a.  Then, f (0, 0) < 0.  
And so, for a neighborhood  of the origin, we know 
that V (x, y) > 0, except on the line L, in which case, 
V(x, 0) ≡ 0. And by definition, this region, which 
contains the origin, must be part of E.  
 
For level curves V (x, y)  = c, c > 0, we allow that c 
surrounds B . At the same time however, we restrict 
this level curve to be contained entirely within E . 
In this way, there is a region where V(x, y) > 0 and 
V (x, y) > 0. Solutions may exist entirely within B , 
at the origin, or outside of E entirely, since E is the 
region where V(x, y) > 0. 
 
Case 2. Let εb1 < a. Then, if S < 0, either no ellipse 
E exists, or the ellipse does exist, however the 
origin is no longer inside of it. Consider once again 
f (x, y) at the origin. We see that f (0, 0) > 0. Hence, 
V(x, y) < 0. Recall that our ellipse, E , contains the 
region where V(x, y) > 0, assuming we restrict (x, y) 
∈ ܧ)	ܧ ∩  Our solution curve, V (x, y) = c may.(ܮ
exist anywhere so long as it does not intersect B or 
E . 
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4 Chaos  

 
4.1 Butterflies 

 
We have really only focused on determining the 

stability of our fixed points, however there are 
many other interesting questions we can ask of a 
dynamical system.  Two of these questions, which 
concern sensitivity dependence, we can lump 
together: how sensitive is our system to the initial 
conditions that we give it, and how sensitive is our 
system to a certain parameter which it calls? 

 The relevance of this first question was 
explored by meteorologist Edward Lorenz [20].  At 
the time, he was studying weather forecasting 
models.  He found that by changing his initial input 
to the system, he could wildly, and quite 
unexpectedly, change the prediction give by his 
model.  Consider the following question, which 
was actually the title of a talk given by Lorenz back 
in 1972 [20]: 

 
 Does the Flap of a Butterfly’s Wings in Brazil 

Set Off a Tornado in Texas? 
 
 This may at first seem frivolous, but the 

concept which drove him to ask in the first place 
digs a little bit deeper.  Given some system which 
you use to make predictions (in essence, any 
mathematical model), do you expect that using 
roughly equal initial conditions will give you 
roughly the same prediction?  Surprisingly, and this 
is what Lorenz discovered, the answer is not always 
yes. 

 Granted, this question depends on a lot of 
things, for instance how far apart your initial 
conditions are, how far into the future you wish to 
make predictions, and how different predictions 

need to be before you are willing to actually deem 
them “different.”  However, once we define 
explicitly what we are asking, we can learn a great 
deal about our system.  When we start thinking 
about this in mathematical terms, the butterfly 
effect means that two solutions, initialized ever so 
slightly apart, will diverge exponentially as time 
progresses (assuming of course that our system in 
question possesses this property). 

 
4.2 Modified BVDP with Smooth Periodic Forcing 

 
With regards to the FitzHugh-Nagumo model, 

asking such a question as to whether it is sensitive 
to initial conditions is in most cases trivial.  If we 
take a look at the vector field in the phase plane 
(see above), we see that none of our solutions will 
run away on some different path, since they are all 
restricted.  You may recall at this point, back in 
section 3, how we found a region in which V was 
negative definite. 
 

  
 
 
 
 
 
 
 
 
 
 
 
Even more specifically however, we know that 

each solution starting in a certain neighborhood of 
the equilibrium will either converge asymptotically 
to the equilibrium, or it will periodically trace an 
orbit that is held within the neighborhood.  There 
are no surprises here: as long as you initialize a 
solution in the neighborhood, you will get 
asymptotic convergence or an orbit. 

 But what happens when you start changing the 
parameters inside of the equations themselves?  We 
will begin to examine this question by considering 
a modified version of the Bonhoeffer - van der Pol 
equation [5], which is a distant cousin of the 
FitzHugh-Nagumo model (remove the forcing 
function and do a change of variables to get FH-N): 
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 The authors, Braaksma et al., define s (t) to be 
a Dirac δ-function calling t modulus some constant, 
T.  While the Dirac function is especially useful for 
modeling neuronal dynamics, we decided to look at 
smooth forcing.  The function we ultimately ended 
up choosing is rather simple:  We consider a 
smooth, periodic force, generated by s (t) = κcos 
(t). 

 Consider the modified BVDP oscillator which 
fixes ε= α = 0.01, and κ = 0.  The phase diagram for 
a solution starting near the origin is shown in 
Figure 5.  We will take some liberties by assuming 
that the physiological analog for this solution is 
similar to that of our original FH-N oscillator.  
Notice above in Figure 6 how a neuron in the active 
state could be modeled by a solution, Φ(u, w), 
which travels sufficiently far towards the “left” side 
of the phase space (u decreasing) before travelling 
up the left knee of the cubic nullcline [14].  Taking 
a look at the phase portrait for the above conditions 
(Figure 5), we see that this particular “neuron” 
never reaches the active state. 

 Keeping ε and α fixed at their value of 0.01, 
we now set κ = 0.5 (Figure 7).  In essence, we are 
delivering a continuously oscillating current of 
electricity, the magnitude of which does not exceed 
0.5.  We see now that a solution with the exact 
same starting conditions now sweeps all the way to 
the left side of the space before traveling up the left 
knee.  Referencing once again the picture of the 
phase space for Figure 7, we see that this solution 
simulates a neuron experiencing an active state (in 
addition to other states). 

 Another important aspect of this portrait worth 
noting is the existence of what appear to be four 
periodic limit cycles through which our solution 
travels.  Shown in Figure 8 is the bifurcation 
diagram for our bifurcating parameter, κ.  We see 
that as the value of κ changes from 0.1 to 1, 
solutions exist possessing 2, 3, and 4 distinct limit 
cycles (we see that it is consistent with the phase 
portrait for κ = 0.5).  For κ between 0 and 0.1 
however, it is unclear what is happening.  It appears 
as though dozens of limit cycles may potential 
exist.  Our system seems o be highly sensitive to 
the value of κ.  The question now becomes whether 
or not this parameter sensitivity means that chaos is 
actually present. 

 
 
 
 
 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.3 Lyapunov Exponents 
 
Arguably the most popular way to quantify the 

existence of chaos is by calculating a Lyapunov 
exponent.  An n-dimensional system will have n 
Lyapunov exponents, each corresponding to the 
rate of exponential divergence (or convergence) of 
two nearby solutions in a particular direction of the 
n-space.  A positive value for a Lyapunov exponent 
indicates exponential divergence; thus, the presence 
of any one positive Lyapunov exponent means that 
the system is chaotic [34]. 

 
4.3.1 Lyapunov Spectrum Generation 

 
There have been numerous algorithms published 

outlining different ways for generating what are 
known as Lyapunov spectra.  As previously 
mentioned, an n-dimensional system will have n 
Lyapunov exponents.  Each Lyapunov exponent is 
defined as the limit of the corresponding Lapunov 
spectrum calculated using one of these 
aforementioned algorithms.  For our calculations, 
we consider the following method from Rangarajan 
which eliminates the need for reorthogonalization 
and rescaling [25]. 
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Suppose we have a two dimensional system of 

nonlinear differential equations, like the one below: 
 
  

 
 
 
We may describe a Jacobian for this system in the 
same way as we did back in Section 2: 
 
 
 
 
 
Given our two dimensional system and its 
corresponding linearization, Rangarajan introduces 
three more differential equations to be coupled with 
the original system.  The state variables λ1 and λ 2 
are the Lyapunov exponents, and 2 is a third 
variable describing angular evolution of the 
solutions.  The heart of the algorithm, equations for 
setting up the three new variables, is shown below 
[25]: 

 
 
 
 
 
 
 

 
 Coupling these three equations with our 

original system, we get a five dimensional system 
of differential equations.  We now simultaneously 
solve all of these as we would any other system of 
differential equations, and the output corresponding 

to the values of λ 1 and λ 2 over time is the 
Lyapunov spectrum we seek. 

 
4.3.2  The Lyapunov Spectra 

 
Running the algorithm for our modified BVDP 

model with 6 = 0.5 will produce the spectrum 
shown in Figure 9.  Recall how we saw four stable 
limit cycles existing for the solution to this system.  
Hence, we would not expect either of our 
Lyapunov exponents to be greater than zero.  Upon 
generating each of the Lyapunov spectra, we see 
that this is indeed the case.  Both of the Lyapunov 
exponents for this particular system seem to settle 
down right away at two negative values, a result 
which is consistent with our expectations.  In 
general, for roughly any system constructed with a 
6 value between 0.1 and 1, we can predict, at the 
very least, that both of our Lyapunov exponents 
will be less than zero. 
 

 
 
  
 
 
 
 
 

However, the same cannot be said for systems 
calling a value of 6 between 0 and 0.1.  Setting 6 = 
0.01, we may generate the following phase portrait 
(see Figure 10).  Notice there are now numerous 
orbits, none of which are generating an active state, 
and none of which seem to have been traced more 
than once.  Said another way, this solution, upon 
first glance at least, appears to be aperiodic.  
Aperiodicity is our first clue that chaos might be 
present in the model. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 Changing nothing except for the value of 6, we 

may now generate the Lyapunov spectrum 
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corresponding to this new system (Figures 11 and 
12).  We see that one of these lines eventually 
makes its way underneath the horizontal axis, but 
the other one hovers enticingly close to the axis.  At 
first glance, it is difficult to tell whether or not it 
ever actually reaches the horizontal axis and/or 
goes negative.  The figure shown below this current 
spectrum zooms in on values between t = 80 and t = 
100. 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
In terms of chaos, it is difficult to judge what 

is happening.  While one of these lines ventures 
below the horizontal axis, the other is clearly 
oscillating strictly above the axis.  We could be 
remiss to immediately conclude that chaos is in fact 
present.  And we have two reasons for offering this 
conjecture: 

 
1. The oscillations are being only slightly 
damped, and 

 
2. There appears to be a decreasing trend to these 
oscillations, suggesting they may eventually pass 
beneath the horizontal axis. 

 
 The first reason listed above presents issues 

for us since we need this output to approach some 
kind of limit.  If it continues to behave like it is 
currently, we cannot say definitively whether it will 
asymptotically reach a limit or not (recall how the 
limit of cost(t) is undefined as t approaches 
infinity).  Should it not asymptotically approach a 
limit, the only real conclusion we could offer is that 
we need to use a more robust algorithm.  The 
second reason is not so much a problem as it is an 
observation that this output could be asymptotically 
approaching a positive, negative, or zero valued 
limit.  For now, all we know is that one of our 

Lyapunov exponents appears to be negative, and 
the other is positive as far as our solver can tell us. 

 
5 Discussion 

 
“The healthy heart dances, while the dying 
 organ can merely march [8]” 
-Dr. Ary Goldberger, Harvard Medical School 
 
The very nature of cardiac muscle stimulation 

fosters an environment for the propogation of chaos 
as we have previously described it.  This may at 
first seem slightly counterintuitive.  The word 
“chaos” itself connotes disorder.  Certainly it would 
not immediately come to mind to describe a process 
as efficient as cardiac muscle contraction.  And yet, 
what we find physiologically with hear rhythms is 
that a “...perfectly regular heart rhythm is actually a 
sign of potentially serious pathologies [10].”  In 
particular, many periodic processes manifest 
themselves as arrythmia such as ventricular 
fibrillation or asystole (the absence of any heartbeat 
whatsoever) [12].  Neither of these particular heart 
rhythms is conducive for sustaining life: automated 
external defibrillators (AEDs) were developed to 
counteract the presence of ventricular fibrillation in 
a patient; and asystole is the exact opposite of what 
is conducive for keeping a human alive. 

 At this point, it would appear as if chaos, at 
least in humans, is required for survival.  Indeed, 
Harvard researcher Dr. Ary goldberger was so 
moved by this idea that he made the above 
comment before a conference of his peers back in 
1989.  As the next few years unfold, it will be 
interesting to see what role, if any, chaos plays in 
assisting engineers with the development of new 
equipment to alter life-threatening cardiac 
arrhythmia in patients.  The past twenty years 
especially have seen a tremendous increase in the 
demand for AEDs in public fora.  Unfortunately, 
commercially available AEDs can only treat 
ventricular fibrillation and ventricular tachycardia 
[28]. 

 AEDs operate by applying a burst of 
electricity along the natural circuitry in the heart.  
This electrical stimulus causes a massive 
depolarization event to take place, triggering 
simultaneous contraction of a vast majority of 
cardiac cells.  The hope is that this sufficiently 
resets the heart enough for the pacemaker to regain 
control.  In terms of a forcing function, this is 
almost similar to stimulation via a Dirac *-function.  
Hence, we find the underlying motivation for our 
exploration into alternative forcing functions. 
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 If we consider our modified BVDP model to 
be a sufficient analog to cardiac action potential 
generation, then the solution in Figure 5 roughly 
represents a heart experiencing ventricular 
fibrillation.  Application of our forcing function s(t) 
= 6cos(t) for amplitudes between 0.1 and 1 seems 
to positively impact this model by inducing active 
states.  However, it is unknown whether or not this 
is a realistic or even adequate portrayal of 
positively intervening on an arrhythmic event. 

 In light of the quote from Dr. Goldberger, is it 
possible that we should be discounting periodic 
solutions?  If a healthy heart rhythm is in fact 
chaotic, would this necessitate the generation of a 
chaotic solution?  Thus far, the closest we have 
come to the aforementioned chaotic solution is one 
which nondiscriminantly oscillates along 
subthreshold or superthreshold orbits, most of 
which do not even come close to simulating an 
active event in the cell.  In essence, this would 
imply that the heart is “skipping a beat” each time it 
fails to generate an action potential.  This is no 
closer to offering a viable heart rhythm, and is 
actually further off the mark, than our periodic 
solutions.  Unfortunately, our search continues for 
an induced current that can generate both chaos and 
muscle contraction. 

 Another issue needing to be considered is the 
fact that we cannot, in our modified BVDP model 
with smooth periodic forcing, remove the forcing 
lest the neuron quit generating action potentials.  
Shown below in Figure 13 is the phase portrait for 
the modified BVDP model with a damped periodic 
forcing function, s(t) = ଵ

௧ାଵ
kcos(t).  We see maybe 

one action potential generated, and then rest are all 
subthreshold excitations. 

 At first glance, it would appear as though we 
have to continuously induce our current.  This 
imposes an entirely impractical, even dangerous, 
requirement on emergency service providers in the 
field.  However, if our forcing function behaves at 
all like an AED, this result is not surprising.  Once 
you strip away the forcing function, or in our case, 
once you evaluate solutions after t has grown 
sufficiently large, the underlying model describes a 
v-fib-like event taking place.  It would then only 
make sense that action potentials are no longer 
generated. 

 The question now is whether or not our 
forcing function could effectively take the place of 
a strong induced electrical spike, similar to that 
delivered by an AED.  And if the answer is no, are 
there scenarios in which continuous application of 

our periodic current would be practical?  Certainly 
no such scenario is imaginable for AEDs, however 
the possibility remains that it could be useful within 
a highly controlled setting such as inside of an 
operating room during surgery or built into an 
implantable pacemaker.  Ultimately, this is a 
question best left to the engineers and surgeons. 

  
 
 
 
 
 
 
 
 
 
 
 

 
 

 
The reason why this is so important is because 

sudden cardiac arrest (SCA), causes the deaths of 
more than 250,000 Americans each year [15].  
Contrary to popular belief, SCA is first and 
foremost an electrical problem, triggered by faulty 
heart rhythms.  It should not be confused with a 
heart attack, which is actually a blockage in one of 
the major blood vessels of the circulatory system. 
Certainly a heart attack could eventually become 
cardiac arrest if left untreated, but qualitatively they 
are entirely different events. 

 Whereas heart blockages and similar 
“plumbing problems” can be remedied by 
angioplasty or bypass surgery, SCA requires 
immediate intervention.  Typically the window for 
successful interruption of a cardiac arrest episode 
will close within approximately eight to ten 
minutes of onset.  Even with proper training, like a 
CPR or First Aid course that incorporates the use of 
an AED, SCA results in death for most out-of-
hospital patients.  This is certainly not for lack of 
trying, there are just two big problems victims 
currently face: 

 
 CPR is an inefficient substitute for the 

natural blood delivery to the heart, and 
 AEDs are only effective against two 

arrhythmia, v-fib and v-tach. 
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Ideally, technology will be made widely 
available so that any arrhythmia could be treated in 
an out-of-hospital environment by a layperson. 

 Our research has not discovered the 
technology described above.  However, it is a step 
in the right direction.  It is my most sincere belief 
that such technology can exist, and I suspect we 
will see it in the near future as the research 
progresses.  In the meantime, I hope that our 
journey will prove useful for those looking to 
advance the areas of electrocardiography and AED 
engineering. 
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