Determination of the nano-scale adsorption orientation of Peptide Akane Ichiki and Kazushige Yokoyama Department of Chemistry, SUNY Geneseo, Geneseo, NY 14454

Background

geometric analysis and simulation was The conducted by assuming a prolate shape of all amyloidogenic peptides. The simulation concluded that a spiking-out orientation of a prolate was required in order to reproduce the extracted peptide coverage ratio, Q. The involvement of a secondary layer was suggested; this secondary layer was considered to be due to the networking of the peptides. Both Ab1-40 and b2m are considered to have a partial charge (especially d+) distribution centering around the prolate axis. The asyn, on the other hand, possesses a distorted charge distribution. For relatively lower Q (i.e., Q < 0.56), a prolate was assumed to conduct a gyration motion, maintaining the spiking-out orientation in order to fill in the unoccupied space with a tilting angle of approximately 25°.

Calculation Hypothesis:

<u>#1 Peptide Prolate</u>

Figure 1. A schematic diagram of sequences for three amyloidogenic peptides a) $A\beta_{1-40}$, b) α --syn, and c) β 2m were assumed to have a prolate shape.

#2 Orientation

We focus on the orientation of the peptide by assuming the peptide shape as a simple prolate. The orientation of this prolate can be roughly considered to be two ways either lay down or spiking out over the spherical surface of nano-gold colloid surface.

As the first approximation, the lay-down orientation can be more stable and can possess higher interaction between a peptide and gold colloidal surface.

Calculation for First Layer:

Figure 3. A schematic procedure simulating the coverage ratio of a peptide over a gold-nano colloidal sphere.

nm).

$$l_b = \sqrt{r^2 - b^2} \qquad \qquad i_{max} = \left\lfloor \frac{a + l_b}{2a} \right\rfloor$$
$$\frac{2\pi + (r_i + a)}{2b} \right\rfloor, r_i = \sqrt{r^2 - L_i^2}, L_i = \frac{l_b - a}{i_{max}} \times i. \qquad \qquad n_{eq} = \left\lfloor \frac{2\pi + (r + a)}{2b} \right\rfloor$$

$$l_b = \sqrt{r^2 - b^2} \qquad \qquad i_{max} = \left\lfloor \frac{a + l_b}{2a} \right\rfloor$$
$$n_i = \left\lfloor \frac{2\pi + (r_i + a)}{2b} \right\rfloor, r_i = \sqrt{r^2 - L_i^2}, L_i = \frac{l_b - a}{i_{max}} \times i. \qquad \qquad n_{eq} = \left\lfloor \frac{2\pi + (r + a)}{2b} \right\rfloor$$

[3] A procedure of counting the adsorption point along equatorial axis; n_{eq} . The detailed procedure of extracting the n_{eq} for the case of gold colloid of d = 30nm (d = 30.7 nm)

 $n_i = \left\lfloor \frac{2\pi + (r_i + a)}{2b} \right\rfloor$

points (n_{total}).

 $A_{prolate} = \pi ab$

[5] A schematic sketch of the imaginary surface area covering the prolate over the nano gold colloid with a radius, r. The concept used to calculate the coverage fraction, (Θ) .

Calculation for Second Layer

Figure 4. A schematic procedure simulating the 2^{nd} layer coverage ratio of a peptide over a nano-gold colloidal sphere. Zz

colloid of d = 30 nm (d = 30.7 nm)colloids with a d = 30 nm (d = 30.7 nm).

adsorption points at the 2^{nd} layer ($n_{o \text{ total}}$).

between both layers was counted once.

 $\Theta' = \frac{A' \times n'_{total}}{A_{sphere}}$

[5] ' An overall schematic sketch of either optimizing a and *b* length of unit prolate in a single layer model for each gold size, as well as the empirical parameter. The combination optimizing *a* and *b* length, were utilized to reproduce the obtained Θ for all gold colloidal sizes under all three amyloidogenic peptides coated over their [5]' surfaces.

Figure 2. The horizontal and vertical orientation of the prolate were calculated.

[1] A conceptual sketch indicating that $A\beta_{1-40}$ was simplified as a prolate top and the expected orientation of a prolate to cover the gold colloidal surface.

[2] A procedure of counting the adsorption point along axial axis; n_{ax} . The detailed procedure of extracting the [3] n_{ax} for the case of gold colloid of d = 30 nm (d = 30.7)

$$r_i = \sqrt{r^2 - L_i^2}, \ L_i = \frac{l_b - a}{i_{max}} \times i$$

[4] A procedure of counting total number of adsorption

$$\Theta = \frac{A_{prolate}}{A_{sphere}} \times n_{tot}$$
$$A_{sphere} = 4\pi (r + 1)$$

- [1] ' A procedure of counting the adsorption point along [2] ' axial axis; $n_{0.ax}$, over the 2nd layer. The detailed procedure of extracting the $n_{0,ax}$ for the case of gold
- [2] ' A procedure of counting the adsorption point along equatorial axis; $n_{o,eq}$ over the 2nd layer. The detailed procedure of extracting the $n_{0,eq}$ for the case of gold
- [3] ' A procedure of counting the total number of
- [4] ' A schematic sketch of imaginary surface area covering the prolate over the nano-gold colloid with a radius, r. The concept of calculating the coverage fraction, Θ' . When the total coverage ratio for the 1st [4]' and 2nd layer was calculated, the overlapped area
 - $\Theta_{\text{Total}} = \Theta_{\text{total (1st)}} + \gamma \Theta'_{\text{total (2nd)}}$

Results

Table 1. The summary of calculated axial length of prolate (*a* and *b*) for a) $A\beta_{1-40}$, b) α -syn, and c) β 2m. The extracted Θ , Θ_{obs} , was reproduced as Θ_{total} by combining Θ calculated for the 1st layer ($\Theta_{1,cal}$) and for the 2nd layer ($\Theta_{2,cal}$) with the ratio of 2nd Θ_{cal} (γ ($\Theta_{2,cal}$)) used to reproduce the extracted Θ , Θ_{obs} . The number of attached prolates over the 1^{st} layer was shown under n_1

c) β2m

Figure 5. A plot for experimentally obtained Θ for a) A β_{1-40} , b) α -synuclein, and c) β 2m. A blue solid line composed of a collection of simulated values described in the text. The dotted line shows an upper limit of the Θ value obtained by a single layer model.

K. Yokoyama "Nano Size Dependent Properties of Colloidal Surfaces" Book Chapter in "Colloids: Classification, Properties and Applications" Edited by P. C. Ray (Nova Science Publishing) ISBN# 978-1-62081-128-3, pp. 25-58 (2012)

K Yokoyama (editor) controlling a reversible self assembly path by nanoscale metal surface. -study of fibrillogenesis of Alzheimer's disease

old, d n)	a (nm)	b (nm)	n₁	Θ_{1} calc	$\Theta_{2 cal}$	γ (Θ _{2 cal})	Θ _{total}	Θ _{obs}
9.8 (10)	1.4	2.2	39	0.3791	0.5881	0.4425	0.6393	0.6393
5.2 (15)	1.4	2.2	91	0.4643	0.6530	0.5687	0.8357	0.8357
9.7 (11)	1.4	2.2	111	0.3746	0.7228	0.5116	0.7443	0.7443
0.7(13)	1.4	2.2	287	0.4566	0.7911	0.3027	0.6961	0.6961
0.6(11)	1.4	2.2	528	0.5111	0.8449	0.4112	0.8585	0.8585
1.5(40)	1.4	2.2	854	0.5357	0.8697	0.0877	0.6119	0.6119
0.0(10)	1.4	2.2	1212	0.5728	0.8461	0.0570	0.6210	0.6210
0.0(10)	1.4	2.2	2038	0.5608	0.8957	0.2321	0.7687	0.7687
9.5(13)	0.905	3.72	597	0.1958	0.1847	0.0023	0.1962	0.1962

old, d (nm)	a (nm)	b (nm)	n₁	$\Theta_{1 \text{ calc}}$	$\Theta_{2 cal}$	γ (Θ _{2 cal})	Θ _{total}	Θ _{obs}
8 (10)	4.6	7.4	10	0.3497	0.5099	0.5292	0.6195	0.6195
.2 (15)	4.6	7.4	12	0.2821	0.4600	1.1470	0.8098	0.8098
.7 (11)	4.6	7.4	13	0.2311	0.6876	0.7128	0.7213	0.7213
).7(13)	4.6	7.4	39	0.3986	0.6096	0.4525	0.6745	0.6745
).6(11)	4.6	7.4	48	0.3309	0.7303	0.6860	0.8319	0.8319
.5(40)	4.6	7.4	92	0.4429	0.6588	0.2278	0.5929	0.5929
).0(10)	4.6	7.4	105	0.3971	0.7714	0.2653	0.6018	0.6018
).0(10)	4.6	7.4	186	0.4379	0.7919	0.3876	0.7448	0.7448
9.5(13)	1.4	7.4	190	0.1881	0.2056	0.0100	0.1902	0.1902

-1 ()	- ()	h ()						
, <u>a (nm)</u>	a (nm)	b (nm)	<u>n₁</u>			γ (⊎ _{2 cal})		
10)	2.5	4.6	10	0.4710	0.2414	0.0026	0.4716	0.4716
(15)	2.5	4.6	17	0.1785	0.6403	0.8987	0.7540	0.7540
(11)	2.71	6.41	16	0.4405	0.2687	0.0017	0.4409	0.4409
、 /								
(13)	2.5	4.6	101	0.3965	0.8526	0.4600	0.7887	0.7887
(11)	2.5	4.6	175	0.4410	0.8851	0.3460	0.7473	0.7473
、 <i>′</i>								
(40)	2.5	4.6	276	0.4682	0.9061	0.3081	0.7473	0.7473
< - /	-	-						
(10)	2.98	4.25	88	0.4709	0.4832	0.0055	0.4735	0.4735
()	2.00	0		000	0001	0.0000	011100	011100
(10)	2.5	4.6	666	0.5231	0.9843	0.3676	0.8850	0.8850
. ,								
(13)	2.98	4.25	1025	0.5479	0.99973	0.4424	0.9902	0.9902

References

Kelly et al. 2005. How to study proteins by circular dichroism. *Biochimica et Biophysica Acta*. 119-139

Acknowledgements

The Geneseo Foundation is greatly appreciated for their generous contribution towards this project.

Discussion

Table 2. The list of extracted tilting angles (θ_{α} and θ_{β}) for the lower coverage for a) $A\beta_{1-40}$, b) α -syn, and c) β 2M.

Figure 8. a) The sketch showing the gyration motion of a prolate (a = 2.5 nm and b = 4.6 nm) representing $\beta 2m$ over a gold nano-particle with a diameter of d = 60 nm, where the prolate major axis tilts between 27.5° and 18.9° as it rotates over the surface. It results in an oval occupied space with a = 2.98 nm and b =4.25 nm. (See Table 3) b) The sketch of a gyrating prolate over the nano-gold particle surface.

Conclusions

The surface properties of nano-gold colloidal surfaces due to adsorption of amyloidogenic peptides were successfully monitored and characterized by observing the response of spectroscopic features as a function of an external pH change. This surface property change was found to be linearly correlated with the coverage ratio of the peptide, Θ . With the simplification of the space occupied by a peptide into a prolate, the Θ was extracted through a simplified tessellation logic applied for a sphere. The simulation suggested that a prolate needs to have a spiking-out orientation with prolate axial length of (a, b) = (1.4)nm, 2.2 nm) for A β_{1-40} , (a, b) = (4.6 nm, 7.4 nm) for α -syn, and (a, b) = (2.5)nm, 4.6 nm) for β 2m. The segment possesses a δ + that was considered to be highly used when $A\beta_{1-40}$ and $\beta 2m$ each interacted with nano-gold colloidal surface. This possesses a distribution of centering around the prolate axis. On the other hand, the δ + of α -syn was used to interact between each monomer, and the charge distribution was spread around with a distortion, resulting in a high exposure for the counter acting monomer.

352

Figure 6. The proposed attachment structure of $A\beta_{1-40}$ over the surface of a gold colloidal particle.

Figure 7. A sketch of the side view of a rotating prolate. a) The tilting of a prolate over the nano-gold surface and approximation for radius (L) of the circular plane over the nano surface. b) A rotational motion of a prolate with a fixed contacting point, resulting in a circular occupied space over the surface. c) A gyration motion of a prolate with a movable contacting point, resulting in an oval occupied space over the surface.

c) β2m							
d	9.80	19.7	60.0				
b	4.6	4.6	4.6				
a _g	4.03	6.41	5.40				
θ_{τ}	25.980°	44.166°	35.942°				
θα	64.020°	45.834°	54.058°				
θ _β	0.354°	0.064°	0.326°				
b _g	2.70	2.73	4.80				
θ_{τ}	17.067°	17.262°	31.449°				
θα	72.933°	72.738°	58.551°				
θ _β	0.508°	0.234°	0.060°				

