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What is Derivative-Free Optimization

* Design algorithm to take input function and return optimal
location and optimal function value (usually the minimum)

* Derivative free: some functions are non-differentiable, noisy,

and/or costly to differentiate (meaning you can’t just find the
slope at a point in the function and slide down the slope to
the bottom of the function) so we need an algorithm that
does not try to calculate derivatives/find slopes

* Goal is an accurate, quick, and robust algorithm



Particle Swarm Optimization
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PSO Algorithm
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* V(i + 1) is the particle velocity at the next iteration

* x(1) is the particle’s current location

* p(i) is the particle’s best location so far

* g(i) is the global best location so far

* w is the inertial coefficient (helps maintain current direction)
* C,, and C, are the personal and global coefficients

* 1, and rg4 are random numbers from (0,1)



Pattern Search

y axis Search Step
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* Local algorithm: doesn’t
attempt to explore entire
search space, quickly
finds the local minimum

* Checks function values
near current location
using a certain “pattern”
(list of directions to

X axis

search)



PS Algorithm

. Search step: Starting at current point, evaluate points in each
direction at a certain step size (e.g. evaluate points up, down, left,
and right of the current point)

If a better point is found than the current point, replace with better
point and repeat step 1

Polling step: evaluate points around current point using a designated
pattern (can include diagonals)

If a better point is found, replace with better point and repeat step 1;
if no better point is found, reduce step size and repeat step 1

. Stop algorithm when a minimum tolerance is reached



Why Hybridize?

PSO problem: good at finding deepest well, slow at finding
very bottom of the well

PS problem: doesn’t explore most of search space = find
ocal-only minimum

Hybrid algorithm: let PSO find the deepest well, then let PS
find bottom of the well




3 Methods of Hybridization

* Method 1: Use PSO with a lot of particles for a small number
of iterations, then run PS

* Method 2: Use PSO with standard number of particles until a
minimum tolerance is reached, then run PS

* Method 3: Use PSO with standard number of particles until
average particle distance from global best location is under
threshold, then run PS




Overview of Benchmark Results

* Hybrid methods compared to PSO against 21 benchmark
functions

 All hybrid methods found better (lower) y-values than PSO
* Only method 3 used fewer function evaluations than PSO

 All hybrid methods were more robust (less variance) than
PSO

* Performance profile used to evaluate performance (higher is
oetter)




Performance of Mean and Median Best Y-values

(how good are the best values that the algorithm usually finds)

*the higher the line, the better
the algorithm did relative to the
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Q057

(how fast does the algorithm usually work)

Median (tau: 1-10)

*low lines at larger values
of tau indicates much
worse performance

—

Median (tau: 1-50)

Performance of Median Function Evaluations
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Performance of Variance of Best Y-values

(how reliable/consistent is the algorithm usually)

Variance (tau: 1-10) Variance (tau: 1-1000)
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Application to Water Basin Network

Problem

* To test our hybrid algorithm on a real-world problem, a
water basin network problem that was previously optimized
with other algorithms was chosen to compare against

* To collect rainwater that flows down into rivers, a network of
water basins is needed to capture the water. The problem is:

where to place these basins and how big should eac
* Need to minimize the cost of building/maintaining t

N one be
nese

basins as well as make sure they never overflow or c

ry up



Network Equation and Results

* This is the function we had to minimize (wow!)
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* Our hybrid algorithm (using method 3) found a lower cost
(S757,391) than the best result using a Genetic Algorithm from
the original paper (S760, 572)

* This indicates that our hybrid algorithm can successfully
compete against other currently in-use optimization algorithms




Conclusions

* Letting PS run after PSO improved performance with the
minimum y-values and robustness (reliability) compared to PSO

* Cutting off PSO after reaching a minimum average particle
distance (method 3) reduced function evaluations

* The hybrid algorithm compares favorably to other current
global algorithms for real-world problems



