The role of the indirect basal ganglia pathway in a mouse model of repetitive circling behavior

Gavin Vaughan, Allison R. Bechard Ph.D.

Department of Psychology and Neuroscience, SUNY Geneseo

Introduction

- Repetitive behaviors are associated with a variety of disorders in humans
- Previous investigations have indicated that the ketogenic diet plays a role in neurotransmitter functioning
- We investigated the potential role of neurotransmitters in repetitive behaviors by investigating how three drugs affected circling behavior in mice

Method

- Circling behavior was measured using photobeam activated locomotor chambers
 - Drugs utilized:
 - L-741,626: Dopamine receptor antagonist
 - CGS21680: Adenosine agonist
 - CDPPB: Gutamate positive allosteric modulator
- Drugs were administered in either a triple cocktail or as single drugs

Results

 Results indicated systemic injection of the triple drug cocktail was not able to reduce circling behavior

• Fig 1: Number of locomotor beam breaks by minute in circling mice (n=5) before vs. after injection of CDPPB (F(17, 68) = 1.9, p = 0.058)

Fig 2: Number of locomotor beam breaks by minute in circling mice (n=5) before vs. after injection of dopamine (F(17, 85) = 7.06, p < 0.0001)

Fig 3 and 4: Difference in XTtot breaks in circling mice before and after a single injection of CDPPB (F(1,4) = 2.32, p = 0.202) and dopamine (F(1, 5) = 18.54, p = 0.008)

<u>Discussion</u>

- These drugs have been shown to reduce striatal indirect basal ganglia pathway cell function
- Results implied the role of the indirect basal ganglia pathway in repetitive behavior, as well as the potential to reduce this behavior through pharmacological means
- The results of this study recapitulate the importance of dopamine in repetitive behaviors, and suggest that dopamine may be a key neurotransmitter implicated in the ketogenic diet's ability to reduce stereotypy

Future Directions

- This experiment suggests the potential of a single drug injection in reducing repetitive behavior, future studies may further investigate the the single drug effects of CGS21680
- It is unclear why the triple drug injection did not have the same attenuating effects as the single drug trials.
 A future study may attempt to reinvestigate the use of the triple drug cocktail

Fig 5: Differences in XTtot
locomotor activity between
circling and non-circling mice
Fig 6: Correlation matrix of
relationship between scan focal
sampling of circling behavior and
XTtot beam breaks (r = 0.641

and p = 0.024)

6 (Symbol 10000 | 100000 | 100000 | 100000 | 100000 | 100000 | 100000 | 100000 | 100000 | 1000

Acknowledgements: This work was funded by the Kyrwood Summer Fellowship awarded by the Office of Sponsored Research at SUNY Geneseo.