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Identifying Potential RNA Binding 
Domains in the Thumb Region of  

R2 Protein

Brooke Demetri 
Jessica Palmeri

sponsored by Varuni Jamburuthhugoda, PhD

Abstract
Transposable elements are selfish mobile genetic elements able to replicate in the host 
genome and are classified as either DNA type elements or retrotransposons. In our study, 
we focus on R2 retrotransposable elements. Retrotransposable elements can reverse tran-
scribe an RNA intermediate into DNA either before or during integration into the target 
genome. The R2 element exclusively inserts in the 28S rRNA genes via the mechanism of 
target primed reverse transcription (TPRT). For the TPRT mechanism to occur, the 5' 
and 3' ends of the RNA intermediate must bind to R2 protein before cleavage and inser-
tion into a new genomic site can occur. Despite its importance in TPRT, RNA binding 
sequences of the R2 protein are not well understood. The objective of this study was to 
create single alanine replacements via site-directed mutagenesis in both the RYGLV and 
KPQQR sequences, which are highly conserved in the thumb domain of the R2 protein, 
and to isolate this mutated R2 protein for use in future assays. By examining the RNA 
binding properties of the R2 protein, we can further understand the TPRT mechanism 
and its overall role in retrotransposon success.

Background

When considering the importance of DNA, it is first regarded for its instruc-
tional role in the production of proteins, which is critical to sustaining life. 
However, only 1.5% of the human genome actually encodes for proteins, 

meaning that 98.5% of the human genome is composed of non-protein encoding genes 
(Gregory, 2005). Of these 98.5% of non-coding genes, roughly 45% are composed of 
transposable elements (TE), sometimes referred to as “mobile genetic elements,” “jump-
ing genes,” “selfish DNA,” and “junk DNA” (Belancio et al., 2009). TE are mobile 
genetic DNA sequences that are able to insert themselves into different sites throughout 
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the genome and are present in almost all prokaryotic and eukaryotic organisms, account-
ing for vast amounts of genetic material. 

TE are classified as either DNA type elements or retrotransposons, as these respective 
subtypes differ in the mechanism of which they transpose themselves. Whereas DNA 
type elements move via a DNA intermediate, retrotransposons move via an RNA inter-
mediate, through a mechanism known as retrotransposition. Retrotransposons encode 
their own reverse transcriptase (RT), allowing them to reversely transcribe the RNA 
intermediate into cDNA when transposing themselves to the target site (Brooker, 2018). 
Retrotransposons are further classified into two groups: Long Terminal Repeat (LTR) 
and non-LTR retrotransposons. For our study, we are focusing on non-LTR retrotrans-
posons, specifically R2 retrotransposable elements.

Retrotransposons are highly abundant and found in many eukaryotic genomes. In fact, 
retrotransposons compose roughly 41.8% of the human genome, with non-LTR retro-
transposons representing 17% of the human genome, highlighting the importance and 
applicability of retrotransposon research in the study of human genetics (Cordaux & 
Batzer, 2009; Eickbush & Jamburuthugoda, 2008). In fact, understanding the way that 
retrotransposons move and insert within the human genome has important applications 
in medicine because many types of cancers and other diseases can be caused by insertion 
of these TEs within critical genes. For example, a study found that frequent somatic in-
sertion of L1 elements (abundant TE in the human genome) into critical genes may play 
a role in lung-tumorigenesis (Iskow et al., 2010). 

Additionally, there are many applications of TE research in the field of human genet-
ics, such as its promise in gene therapy as a gene delivery tool. R2 retrotransposable 
elements exclusively insert into a conserved region of the 28S rRNA genes (Eickbush 
et al., 2013). Since this R2 28S rRNA insertion site is conserved across all eukaryotes, 
including humans, this integration consistency allows for detailed analysis of its retro-
transposition mechanism, thereby helping researchers further understand how the R2 
integration mechanism can be used as a potential gene delivery tool (Christensen et al., 
2006; Jamburuthugoda & Eickbush, 2014). Therefore, by studying the R2 integration 
mechanism, it can provide insight into how other retrotransposons with similar integra-
tion mechanisms integrate into the genome and how this could be exploited for gene 
delivery purposes. The goal of our study is to learn more about the integration mecha-
nism of the R2 element, specifically, the domains of the R2 protein that are important 
for RNA binding and the R2 elements’ overall success. In our study, we are using the R2 
protein encoded by Bombyx mori to study the integration mechanism of the R2 element 
into the host genome.

R2 elements encode a single open reading frame (ORF) with a central RT domain, 
C-terminal restriction-like endonuclease (RLE) and cysteine-histidine rich domain, and 
N-terminal zinc-finger (ZF) and Myb nucleic-acid binding domains (Jamburuthugoda 
& Eickbush, 2014; Khadgi et al., 2019). When the R2 element gets inserted into a new 
location, the 28S rRNA gene in the eukaryotic chromosome is first transcribed into 
mRNA in the nucleus. This mRNA then leaves the nucleus and enters the cytoplasm 
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where the R2 RNA is translated into protein by the ribosomes. After translation, the 
newly formed R2 protein binds to the same RNA strand that it was translated from, 
forming an integration-competent ribonucleoprotein (RNP) complex that goes back 
into the nucleus and inserts into a new site within the 28S rRNA gene in the eukary-
otic chromosome. R2 integrates via the mechanism of target primed reverse transcrip-
tion (TPRT), where target DNA is first cleaved at the bottom strand by the upstream 
bound R2 protein subunit and the released 3' OH group is used to prime the reverse 
transcription of the element RNA onto the target site (Khadgi et al., 2019). Next, the 
downstream bound R2 protein subunit cleaves the top DNA strand and the released 3' 
OH group is used to prime second-strand DNA synthesis, displacing the RNA strand as 
the newly synthesized DNA is extended. This newly synthesized double stranded DNA is 
then inserted at the target site, and the nicks that were created during the double strand-
ed breaks in DNA are repaired by a host repair mechanism (Yamaguchi et al., 2015). 

Important to the TPRT mechanism is the activity of the R2 protein, which directs RNA 
binding of the protein upstream and downstream of the target site upon association with 
the 3' and 5' end of R2 RNA, respectively, as well top and bottom DNA strand cleavage 
to prime reverse transcription (Jamburuthugoda & Eickbush, 2014). In our study, our 
goal was to mutate two highly conserved regions within the thumb domain of the R2 
protein to identify whether these specific regions are important in R2 RNA binding of 
the R2 protein, and therefore can be classified as an RNA binding domain. If the mutant 
R2 protein has decreased TPRT activity compared to that of the wild type R2 protein, 
then these conserved regions can be identified as an RNA binding domain.

As displayed in Figure 1, phylogenetic studies have shown highly conserved protein se-
quences of RT domains in the fingers, palm and thumb domain encoded by TEs, tel-
omerases and group II introns (Jamburuthugoda & Eickbush, 2014). Previous research 
has characterized two highly conserved protein motifs N-terminal to the RT domain in 

Figure 1. Comparison of R2 protein reverse transcriptase domain with retroviruses, 
group II introns and telomerases (Jamburuthugoda unpublished figure)
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R2, the 0 region and -1 region, as an RNA binding region (Jamburuthugoda & Eick-
bush, 2014). By analogy to group II introns, the putative thumb domain of R2 protein 
is a candidate for RNA binding (Eickbush & Jamburuthugoda, 2008). In this study, we 
are focusing on the thumb domain of the R2 protein, specifically both the RYLGV and 
KPQQR sequence, as potential RNA binding regions of R2 protein to the 3' and 5' end 
of R2 RNA. 

Our goal was to perform site-directed mutagenesis of the RYLGV sequence and KPQQR 
sequence. Specifically, we sought to create single alanine replacements of arginine to 
alanine in the RYGLV sequence, and lysine to alanine in the KPQQR sequence. After 
confirming that the single mutation was successful, we ultimately want to use this single 
mutant as a template to create a second mutation within the RYGLV sequence (tyrosine 
to alanine) and KPQQR sequence (glutamine to alanine). If site-directed mutagenesis 
of the RYLGV and KPQQR sequences  is successful, we can then express the mutant 
protein to study its RNA binding ability compared to that of the wild type R2 protein. 
We hypothesize that the mutant R2 protein will have significantly reduced ability to 
carry out activities that require specific RNA binding, such as the TPRT integration 
mechanism. Additionally, the functionality of R2 protein, such as its ability to carry 
out its reverse transcriptase activity and endonuclease activity, should be retained after 
mutagenesis. 

Experimental Design
pR2cdn-B plasmid construct. Our goal is to identify additional RNA binding protein 
motifs important in the R2 RNA binding ability of the R2 protein and its subsequent 
integration into the host genome. In order to mutate the R2 protein and to produce 
this mutant protein for use in future biochemical assays, we used a pR2cdn-B plasmid 
construct obtained from our collaborator, Dr. Shawn Christensen, from the University 
of Texas at Arlington (Figure 2). The pR2cdn-B plasmid is a genetically modified plasmid 
that can be transformed into different Escherichia coli (E. coli) cell lines, such as JM109 
and BL21, to produce the R2 protein within E. coli cells. The pR2cdn-B plasmid is 7.3 
kilobases and contains the open reading frame of the R2 protein, which has the same 
exact amino acid sequence as that found in the R2 protein of Bombyx mori. However, 
since the pR2cdn-B plasmid construct is codon optimized for E. coli, meaning that the 
DNA sequence was altered to match the codons most frequently used in E. coli when 
synthesizing R2 protein, the pR2cdn-B plasmid allows for effective production of the R2 
protein within E. coli cells. 

Important features of pR2cdn-B include the T5-lac promoter, lacI gene, and Kanamycin 
resistance gene. The hybrid T5-lac promoter is recognizable by the E. coli RNA poly-
merase and is important for the transcription of the R2 protein. This hybrid promoter 
contains three lacI binding sites, where the lacI repressor will bind and prevent tran-
scription of the R2 protein. In normal circumstances, when the lac repressor is bound 
to the operator site, transcription and subsequent translation of the plasmid genes is 
prevented. Therefore, in order to induce R2 protein production in E. coli cells, IPTG 
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(a lactose analog) is added, which will bind to the lac repressor and thereby remove it 
from the lacI binding sites, ultimately inducing subsequent R2 protein transcription and 
translation. Additionally, the Kanamycin resistance gene allows for selection of successful 
transformants of the pR2cdn-B plasmid grown on LB/Kanamycin plates. E. coli cells 
that did not successfully uptake the plasmid will not have the Kanamycin resistance gene 
and therefore would not survive on these plates.

Primer design. The forward and reverse mutagenic primers for the RYGLV and the 
KPQQR sequence of the thumb region of the R2 protein of the pR2cdn-B plasmid 
construct were designed (Invitrogen) (Figure 3A). Primers were designed such that with-
in the RYLGV sequence, arginine (R) was mutated to an alanine (A), and within the 
KPQQR sequence, lysine (K) was mutated to an alanine (A) (Figure 3B). After confirm-
ing that the single mutation was successful, we ultimately want to use this as a template 
to create the second mutation, tyrosine to an alanine, within the RYGLV sequence, and 
glutamine to alanine, within the KPQQR sequence (Figure 3C).

Creating more template DNA. A streak plate was made on LB/ Kanamycin plates using 
the WT R2 glycerol stocks obtained from our collaborator, Dr. Shawn Christensen. Af-
ter incubating overnight at 37°C overnight, a single colony was selected and suspended 
in a 50μg/mL LB/Kanamycin stock solution to allow the plasmid to amplify overnight. 
3mL of bacterial overnight culture was used in the QIAprep Spin Miniprep Kit to extract 

Figure 2. Plasmid/template contain R2 protein sequence, codon optimized for E. coli, 
with open reading frame (ORF) of R2 protein (red)
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the WT R2 plasmid DNA. DNA was quantified using the NanoDrop Spectrophotom-
eter and an aliquot of the plasmid DNA sample was also ran on a 0.75% agarose gel. 

Site-directed mutagenesis
For the site-directed mutagenesis reaction, the pR2cdn-B plasmid construct was used as 
a template that the mutagenic primers annealed to. After preparation of the plasmid, the 
double stranded DNA of the plasmid was first denatured, followed by annealing of the 
mutagenic primers. At 68°C, the mutagenic primers were extended by PfuTurbo DNA 
polymerase to synthesize the mutant DNA strand. PfuTurbo DNA polymerase was used 

Figure 3. Mutagenic primer design for site-directed mutagenesis of conserved sequences 
within the thumb domain of R2 protein. (A) Open reading frame of R2 protein. (B) 
Single mutant primer design. RYGLV sequence: arginine (R) to alanine (A); KPQQR 
sequence: lysine (K) to A. (C) Double mutant primer design. RYGLV sequence: R and 

tyrosine (Y) amino acids mutated to A; KPQQR sequence: K and glutamine (Q) amino 
acids mutated to A.
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because it does not have strand displacement properties and extends at a higher fidelity 
than the commonly used Taq DNA polymerase for PCR. It is important to note that once 
the primer starts to get extended, it will extend throughout the entire plasmid until it 
reaches the primer, which generates the full-length linear product of 7.3 kilobases. Only 
when transformed do the nicks in the plasmid become repaired by the ultracompetent 
cells, thereby reforming the circular plasmid. After temperature cycling, the PCR reac-
tion was treated with Dpn1 endonuclease to digest the parental DNA strand. Unlike the 
newly synthesized strand, the parental strand is methylated and thus cleaved by Dpn1, 
allowing for selection of the newly synthesized template with the desired mutation. After 
the Dpn1 digest, the reaction was transformed into XL10-Gold ultracompetent cells. 

QuikChange XL site-directed mutagenesis kit. For the initial set of site-directed mutagen-
esis attempts, we used the PCR cycling parameters outlined by the QuikChange XL 
method with the annealing phase at 68°C (segment 2) for 7 minutes for the first trial and 
10 minutes for the second trial. However, when visualizing the PCR on 0.75% agarose 
gel, no bands were present for both the PCR control product and the PCR reactions and 
the transformation reaction we performed to confirm whether or not the cells had the 
plasmid was also unsuccessful. Since the pR2Cdn-B plasmid has the Kanamycin resist-
ance gene, successful transformants should be able to grow on the Kanamycin plates. 

Therefore, for the second site-directed mutagenesis trial using the QuikChange XL meth-
od, we increased the amount of template DNA from 3ng to 9ng and used a 10-min-
ute extension phase at 68°C rather than the 7-minute extension phase used previously. 
However, as we saw previously, no band around 7.3 kilobases was present for the PCR 
product for the mutagenesis reactions, indicating that our site-directed mutagenesis did 
not work. DpnI endonuclease was added to the PCR reaction to digest the parental 
DNA template and thereby select for the mutation-containing template only. After the 
DpnI digest was incubated for 1 hour, the reaction was transformed into XL10-Gold 
ultracompetent cells. For controls, the R2 template DNA was directly transformed into 
the competent cells, as well as the pET8a plasmid. However, both transformations were 
unsuccessful. 

Two-step PCR. Since the transformations from the previous site-directed mutagenesis 
reactions performed using the kit parameters were unsuccessful, for the next site-directed 
mutagenesis reaction a two-step PCR was used. The rationale for using a two-step PCR 
was that possibly lowering the initial annealing temperature would help the primers 
adhere better to the template. Additionally, more cycles were utilized than the kit rec-
ommended. However, like the previous site-directed mutagenesis reactions, there was no 
band around 7.3 kilobases for the PCR reaction and the transformation reactions were 
unsuccessful.

Gradient PCR. Since the site-directed mutagenesis and transformation reaction using the 
two-step PCR parameters was also unsuccessful, for the next set of reactions instead of 
using PfuTurbo DNA polymerase, we used a new polymerase, Platinum SuperFi DNA 
polymerase. Platinum SuperFi DNA polymerase is better at copying larger templates 
than PfuTurbo DNA polymerase, which might be helpful with the R2 template that we 
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Figure 4. Site-directed mutagenesis using QuikChange XL kit. 0.75% agarose gel stained 
with Gel Red. (A) PCR cycling parameters and gel analysis for first trial of site-directed 

mutagenesis. Lane 2, DNA ladder; Lane 4, PCR reaction (RYGLV); Lane 6, PCR reac-
tion (KPQQR). (B) PCR cycling parameters and gel analysis for second trial of site-di-
rected mutagenesis, with extension phase at 68°C for 10 minutes. Lane 1 and Lane 8, 
DNA ladder; Lane 3, PCR control; Lane 4, PCR reaction (KPQQR); Lane 5, PCR 

reaction (RYGLV); Lane 7, template DNA.

are using since it can form concatemers. Additionally, Platinum SuperFi DNA polymer-
ase has higher fidelity than PfuTurbo DNA polymerase and is more cost effective for the 
amount of reactions that can be performed. In addition to changing the polymerase, a 
gradient PCR was performed. Gradient PCR involves incremental increases in tempera-
ture for the annealing step, which is when the mutagenic primers bind to the template. 
As such, gradient PCR allows for multiple reactions to take place at a time, but these sep-
arate reactions are subjected to different annealing temperatures. For our gradient PCR, 
eight PCR reactions for each conserved thumb region were performed, with incremental 
increases in annealing temperature from 53°C to 63°C (Figure 4). The PCR reaction was 
visualized on a 0.75% agarose gel stained with Gel Red at long exposure. As shown in 
Figure 4, faint bands and smearing were present in lanes 5-12 and in lane 20, indicating 
that there was something amplifying in the PCR reactions. 

Since a faint band located around the expected 7.3 kilobases in lanes 5-12 and in lane 20 
was present, we concentrated the PCR product by combining some of the reactions that 
were run separately. Specifically, for the mutagenic reactions of the KPQQR sequence, 
the PCR reactions in lanes 9 and 10 were combined, as well as lanes 11 and lanes 12. For 
the mutagenetic reactions of the RYGLV sequence, only the PCR reaction in lane 20 was 
used since it was the only lane with a visible band present. The purpose of concentrating 
the PCR product was to yield a stronger band when running these reactions again on 
a different 0.75% agarose gel stained with Gel Red, which we could then extract from 
the gel and purify (Figure 5). Each combined sample was subjected to DpnI digest to 
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eliminate any template DNA, and then the concentrated samples were run on a 0.75% 
agarose gel. The gel was visualized at quick exposure to avoid prolonged exposure to ul-
traviolet light, which could damage the DNA. Stronger bands around the 7.3 kilobases 
were present for the combined gradient PCR for the KPQQR sequence in lanes 4-6, 
as well as for the gradient PCR reaction at 62.2°C for the RYGLV sequence in lane 11 
(Figure 5). These PCR products were then cut out from the gel, and DNA was purified 
using the QIAquick Gel Extraction (QIAGEN) kit. Purified plasmid DNA was then 
transformed into JM109 cells. 

Transformation and plating of gradient PCR. As shown in Figure 6, two different controls 
were used, the pET28a control (Figure 6A) and the WT R2 plasmid DNA itself (Figure 
6B). Since both control plasmids have a Kanamycin resistance gene, the JM109 cells that 
take up either of these plasmids should survive on the LB/ Kanamycin media, growing 
and forming colonies, which did occur. When transforming into the JM109 cells, seri-
al dilutions of both the pET28a control plasmid and the R2 control were created and 
100 μL was directly plated into each of the petri dishes. Next, for each control a 1/10 
dilution, a 1/100 dilution, and a 1/1000 dilution were created starting with 100 μL. The 
transformation efficiency of the JM109 cells was calculated by multiplying the number 
of colonies grown on each plate by their dilution factor and plating dilution, which was 
determined to be 2 x 10^7 colony forming units per microgram (cfu/µg) when using the 
1/10 dilution plate for the wild-type template. Although this transformation efficiency 
was slightly lower than the expected 2 x 10^8 value, overall, the transformation of the 
PCR reactions was successful (Figure 7), indicating that the PCR products minimally 
have the Kanamycin gene, which allowed the transformants to survive on the LB/ Kan-
amycin media. 

Figure 5. Site-directed mutagenesis using two-step PCR.0.75% agarose gel stained with 
Gel Red. Lane 1 and Lane 8, DNA ladder; Lane 3, PCR control; Lane 5, PCR reaction 

(RYGLV); Lane 6, PCR reaction (KPQQR)
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Figure 6. Gradient PCR. (A) Cycling parameters for gradient PCR. Each PCR reaction 
underwent 35 cycles in the thermocycler with a 10-minute extension phase. The annealing 
temperature spanned 53°C to 63°C. (B) Long exposure image of gradient PCR. The PCR 
reaction was visualized a 0.75% agarose gel stained with Gel Red to try and find the ideal 
annealing temperature for the mutagenic primers for each conserved region. Red circle indi-
cates faint bands present around 7.3 kilobase mark. Lane 1 and 13, DNA ladders; Lane 2 

and 3, positive controls. Lanes 5-12, PCR reactions for the KPQQR sequence with increasing 
annealing temperature (53°C→ 63°C); Lanes 14-21, PCR reactions for the RYGLV sequence 

with increasing annealing temperature (53°C→ 63°C). For lanes 5-12, 5 μL of the PCR 
sample and 2 μL loading dye was loaded into each well. For lanes 14-21, 5 μL PCR sample 

and 4 μL loading dye was loaded into each well.

Figure 7. PCR product concentration (left) and gel extraction (right). PCR ran on 0.75% 
agarose gel. Lane 2 and 9, DNA ladder; Lane 4-6, combined gradient PCR for KPQQR 
sequence (30 μL sample and 6 μL of loading dye in each lane); Lane 11, gradient PCR 

reaction at 62.2°C for RYGLV sequence (30 μL sample and 6 μL of loading dye).
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Since the transformations were successful, a few colonies from these successful trans-
formants of the mutant plasmid were selected and grown in an overnight LB/Kanamycin 
broth, and then miniprep protocol to extract plasmid DNA was performed. After, the 
DNA was quantified using the nanodrop spectrophotometer before sending the mutants 
out for sequencing to confirm that the desired mutation was achieved. We will first se-
quence the thumb region and once the mutation is confirmed in that region, the entire 
plasmid will be sequenced to confirm that there are no other mutations. Once we con-
firm the mutation, we will then use this as a template to generate the second mutation 
to make the double mutants in the thumb region. Then we will transform those cells for 
protein expression and purification.

Conclusions and Future Directions
Future research will focus on expression and purification of the mutant protein. Once 
expression and purification of the R2 protein is achieved, biochemical assays can be 
performed to compare mutant R2 protein’s ability to bind RNA to that of the WT R2 

Figure 8. Serial dilution of gradient PCR concentration transformation for controls (from left 
to right: 100 μL → 1/10 μL → 1/100 μL → 1/1000 μL. (A) serial dilution of pET28 control 
(B) serial dilution of wildtype template control. Transformation efficiency: 2 x 107 cfu/µg.

Figure 9. Gradient PCR concentration transformation of PCR products for (A) RYGLV 
sequence and (B) KPQQR sequence. Transformants plated on LB/Kanamycin.
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protein. First, strand DNA cleavage and primer extension assay will assess if the endonu-
clease activity and reverse transcriptase activity of the R2 element has not been affected 
by the site-directed mutagenesis of the thumb region of the R2 protein. This would mean 
that the functionality and structure of the R2 protein was retained. After confirming that 
the thumb domain does not affect these other activities, a TPRT assay will be conducted 
to examine the effect of mutating a specific amino acid within each of the conserved 
regions of the thumb domain on RNA binding. Additionally, we will also perform an 
electrophoretic mobility shift assay (EMSA) to study R2 protein binding ability to 3' 
UTR RNA. 

Performing these assays will allow us to test our hypothesis which is whether the thumb 
region is a potential RNA binding domain, as well as our understanding about the TPRT 
mechanism, which is how the R2 element integrates into the host genome. By under-
standing this mechanism, many new innovations can arise in the prevention and treat-
ment of human disease. 
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