The Effects of Deforestation on Yellow Fever Virus Transmission

Meghan Sheridan
SUNY Geneseo

Follow this and additional works at: https://knightscholar.geneseo.edu/proceedings-of-great-day

Recommended Citation
Available at: https://knightscholar.geneseo.edu/proceedings-of-great-day/vol2022/iss1/10

This Article is brought to you for free and open access by the GREAT Day at KnightScholar. It has been accepted for inclusion in Proceedings of GREAT Day by an authorized editor of KnightScholar. For more information, please contact KnightScholar@geneseo.edu.
The Effects of Deforestation on Yellow Fever Virus Transmission

Cover Page Footnote
sponsored by Dr. Suann Yang, PhD

This article is available in Proceedings of GREAT Day: https://knightscholar.geneseo.edu/proceedings-of-great-day/vol2022/iss1/10
The Effects of Deforestation on Yellow Fever Virus Transmission

Meghan Sheridan

sponsored by Suann Yang, PhD

ABSTRACT

Deforestation is increasingly associated with the transmission of zoonotic viruses, such as the Yellow Fever virus in South America and Africa. Increasing rates of deforestation within countries on these land masses may cause viral transmission to accelerate, but that may depend on the various factors responsible for deforestation. The purpose of this study is to determine what climate factors are increasing the rate of viral transmission. For example, the deforestation caused in areas of increased precipitation may have different effects on animal hosts and vectors (e.g. mosquito) of the Yellow Fever virus compared to deforestation caused in areas of lower precipitation. In addition, population density and economic status of countries could contribute to increased viral transmission. To test this, I obtained data from various databases, including the Global Forest Watch, Center for Disease Control, and the World Health Organization. The R statistical computing software and qGIS were used for statistical and spatial analysis of the data. My results show that countries, such as Argentina and Uganda, display some of the highest levels of proportion of deforestation and precipitation along with some of the highest Yellow Fever cases. This finding may be due to populations of mosquitoes that are either displaced closer to or further away from the human population. Future studies could focus on various other types of virus transmission around the world and how public health in different communities is affected.

INTRODUCTION

Deforestation is one of the leading causes of increased viral transmission in forest climates. In South America, deforestation in the Amazon rainforest has led to increased interactions between malaria-carrying mosquitoes and humans (Vittor, 2020). Similarly, in Africa, Ebola outbreaks in 2004 and 2014 have been linked to deforestation and forest fragmentation (Vittor et al., 2020). Regarding Yellow Fever, a single-stranded positive sense RNA virus, infection rates are suspected to be significantly higher in areas of increased deforestation, such as South America and Africa. Mosquitoes are the primary vector of the virus, transmitting to primate and non- primate (human) hosts. Different temperature and precipitation amounts, especially when in areas of increased deforestation, may also affect transmission. Besides climate factors, popula-
tion density and economic indicators, such as GDP, may influence transmission. This study analyzes how the amount of deforestation occurring in a country relates to the climatological and socio-economic factors of Yellow Fever virus transmission.

METHODS

This study was carried out in a series of three main steps:

1. Data was acquired from various publicly available databases:
 a. The Global Forest Watch provided data on deforestation in countries in Africa and South America.
 b. The World Health Organization provided data on Yellow Fever cases.
 c. World Bank data provided population, temperature, and precipitation median values over the time period.

2. Statistical analysis was performed in the R Programming Environment (R Core Team, 2021).
 a. Primary forest deforestation loss and tree cover extent data were analyzed for both Africa and South America.
 b. The five countries with the highest proportion of deforestation and the five countries with the lowest proportion of deforestation on each landmass were analyzed.
 c. Spearman’s correlation tests were performed between deforestation and time for Africa and South America.

3. Spatial analysis was performed in qGIS.
 a. The Africa and South America layers were joined to the Excel data table and were depicted with graduated symbols.
 b. Descriptive statistics were performed to determine averages of deforestation and Yellow Fever cases.
Figure 1. The South American countries of Argentina, Bolivia, Brazil, Ecuador, French Guiana, Guyana, Paraguay, Peru, Suriname, and Venezuela with the visualized proportion of deforestation, Yellow Fever cases, population, precipitation, temperature, and GDP. The average proportion of deforested areas in a country in South America was 0.003218 with an average of 3.65 Yellow Fever cases.
Figure 2. Change in tree cover loss over time in South America. There is a weak correlation between deforestation and time ($r=0.24$, $p=0.0003$). Each dot represents a country in South America for that year, as shown on the x-axis. There is a slight increase in tree cover loss over time, but the correlation is still considered weak.

Figure 3. Change in tree cover loss over time in Africa. There is a moderate positive correlation between deforestation and time ($r=0.41$, $p<0.0001$). Each dot represents a country in Africa for that year, as shown on the x-axis. Tree cover loss is increasing as time progresses indicating that deforestation may be occurring more rapidly in Africa.
Figure 4. The African countries of Benin, Gabon, Ghana, Ivory Coast, Republic of Congo, Senegal, Sierra Leone, South Sudan, Togo, and Uganda with the visualized proportion of deforestation, Yellow Fever cases, population, precipitation, temperature, and GDP. The average proportion of deforested area in a country in Africa was 0.004347 with an average of 1.4 Yellow Fever cases.

Conclusion
Deforestation over time has generally increased as shown by Figures 2 and 3, leading to various conclusions about other climatological and socio-economic factors. The South American country with the most deforestation by proportion was Paraguay. Paraguay did not display high levels of many of the other factors (Fig. 1), but the increase in deforestation may have a lot to do with the type of landscapes located there. The Gran Chaco Plain is the second largest forest in South America, behind the Amazon in Brazil (Voiland, 2018). This sparsely populated area stretches across Paraguay, Bolivia, and parts of Argentina. Bolivia and Argentina both also displayed relatively higher amounts of deforestation in comparison to other countries.

The African country with the most deforestation by proportion was Ivory Coast. Ivory Coast also displayed the highest amount of Yellow Fever cases, along with high quantities of precipitation and population (Fig. 4). The Ivory Coast is known to be one of the biggest producers of cocoa in the world (Pearce, 2019), which would explain why
Ivory Coast also displays such a high GDP compared to other countries of increased deforestation around it. The Ivory Coast did also display a high number of Yellow Fever cases. To combat increasing Yellow Fever cases, countries around the globe need to work together to maintain lower levels of deforestation while maintaining prevention methods to help aid in the spread anywhere.

To further this study, various directions could be taken. Primarily, every country in Africa and South America could be studied, not just the ones with the highest and lowest rates of deforestation. Once this data is acquired, valid conclusions regarding public health implications could be made to successfully combat Yellow Fever transmission and spread. This study could also serve as a model for future studies on other viral transmission.

Limitations in this study included the scale of measurement for Yellow Fever cases. Data could only be collected to the country level. All other data could be collected at a smaller scale, such as proportion by city. Being able to collect all the data to a smaller scale could lead to less uncertainty in conclusions. Further limitations also arose when collecting data on the South American territory French Guiana, also known as Guyane, due to it being a French territory. Median GDP and population data were unavailable for the desired time period, so the most recent statistics were used.

REFERENCES

