Submission Type
Poster
Start Date
April 2021
Abstract
Repetitive motor behaviors are invariant movements with no apparent function. They are associated with several disorders, including autism spectrum disorders (ASD). However, little is known about the causes of these restricted behavior patterns, and effective treatments are lacking. ASD has recently been treated with a ketogenic diet (KD). Now a popular fad, KD is a high-fat, low-carb diet that has treated intractable epilepsy for decades. However, the mechanisms mediating KD’s beneficial effects are still unclear. We first show KD can attenuate repetitive circling behavior. We then assessed dendritic spine density in the left and right dorsolateral striatum as a potential explanation of the reduction of repetitive behavior with KD. Dendritic spine density is a good indicator of the number of synapses in a region, having implications for synaptic transmission. We imaged the striatum as previous research suggests basal ganglia circuitry is impaired in the development of repetitive behavior. Golgi-Cox histochemistry was performed in order to view dendritic spines and dendritic branching patterns. Dendrite length and the number of spines were measured and used to calculate dendritic spine density for each hemisphere. Hemispheric lateralization of dendritic spine density was also explored for an association with the preferred direction of circling.
Recommended Citation
Seeger, Samantha; Iriyama, Yume; and Bechard, Allison R., "055— Ketogenic Diet and Dendritic Morphology in a Mouse Model of Repetitive Behavior" (2021). GREAT Day Posters. 91.
https://knightscholar.geneseo.edu/great-day-symposium/great-day-2021/posters-2021/91
055— Ketogenic Diet and Dendritic Morphology in a Mouse Model of Repetitive Behavior
Repetitive motor behaviors are invariant movements with no apparent function. They are associated with several disorders, including autism spectrum disorders (ASD). However, little is known about the causes of these restricted behavior patterns, and effective treatments are lacking. ASD has recently been treated with a ketogenic diet (KD). Now a popular fad, KD is a high-fat, low-carb diet that has treated intractable epilepsy for decades. However, the mechanisms mediating KD’s beneficial effects are still unclear. We first show KD can attenuate repetitive circling behavior. We then assessed dendritic spine density in the left and right dorsolateral striatum as a potential explanation of the reduction of repetitive behavior with KD. Dendritic spine density is a good indicator of the number of synapses in a region, having implications for synaptic transmission. We imaged the striatum as previous research suggests basal ganglia circuitry is impaired in the development of repetitive behavior. Golgi-Cox histochemistry was performed in order to view dendritic spines and dendritic branching patterns. Dendrite length and the number of spines were measured and used to calculate dendritic spine density for each hemisphere. Hemispheric lateralization of dendritic spine density was also explored for an association with the preferred direction of circling.
Comments
Sponsored by Allison Bechard